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The theory and development of computer systems able to perform tasks that normally require
human intelligence, such as visual perception, speech recognition, decision-making,and

translation between languages.

Perform high level
computations

Artificial intelligence is a field, which combines computer science and robust
datasets, to enable problem-solving.
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ARTIFICIAL
INTELLIGENCE

ENGINEERING OF MACHINES
THAT MIMIC COGNITIVE FUNCTIONS

0 20;

DEEP

LEARNING
MACHINE MACHINE LEARNING BASED
LEARNING ON ARTIFICIAL NEUBAL NETWORKS

ABILITY TO PERFORM TASKS
WITHOUT EXPLICIT INSTRUCTIONS
AND RELYING ON PATTERNS

-whats-the-difference/



https://www.5gworldpro.com/blog/2022/08/15/artificial-intelligence-vs-machine-learning-vs-deep-learning-whats-the-difference/
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% How Machine Learning Works
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Training Data

. . . Unacceptable

= Machine learning algorithms are molded on {o} R Acceptable
{@} __
a training dataset to create a model. g

. . Accuracy Successful
. . . Train Machine
= As new input data is introduced to the Learning Algorithm A Model
trained ML algorithm, it uses the developed
model to make a prediction. ﬁ
Model Input
Data
'
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New Input Machine Prediction
Data Learning
Algorithm
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o Type of Machine Learning - 2
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Training a Supervised Learner

@ Cat
& Training with labeled data : aa | fos [Suwxﬁ[;s:::i::‘mlna]
includes desired outputs ﬁ I
Supervised |

Making Predictions Dog Cat

Unknown

1 " : I l : ﬁ Prediction oo, FTET
Supervised Learning d . ; i -ﬁ
! Algorithm ” I_,J

Chicken
(e . :
,QD Training unlabeled data does not include

Unsupervised Learning

Unsupervised desired outputs

n n [ Interpretation ] [ Algorithm [ Processing
) Y
wmﬁ@~é @
+ Unknown Output
+ No Training Data Set

Labeled Data: Cat, Dog, Chicken

Unlabeled Data: Group of Animals oG-
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Type of Machine Learning -2

,.\ Input Data
.\ ./. Training partial labeled @ %" Mo ocer )
semisupervised dataincludes a few Srory- ﬁ i
desired outputs Oy ™
,.Panial Labels / 1
e @7

Unlabelled Data

Partial Labeled: Train the system with partial labeled data, not complete Machine will find the fruit from the group of fruits.

b U4
Rewards from sequence
~ of actions

Rel nforcement q;\ction= Fetching |

1

1

! Reward
State i

i

| Environment
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Reinforcement Learning
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= Policy: what todo

Agent

= Reward: what is good 77
= Value: what is good because it // —
predicts reward
= Model: what follows what 0 .
state | reward action
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Deep Learning
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Low Mid High Trainable Output
> Level »  Level > Level > e >
In p Ut Features Features Features Classifier
" Image
Pixe| — Edge — Texture — Motif — Part— Object
= Text

Character— Word —Word-group— Clause— Sentence — Story




\A.\NFU
<O A
IS’ 'rmjﬂh‘hh o

Deep Learning Process
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“EMERGING TRENDS ON INT! PERIMENTAL LEARNING™
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INPUT FEATURE EXTRACTION CLASSIFICATION OUTPUT

DEEP LEARNING
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INPUT FEATURE EXTRACTION + CLASSIFICATION OUTPUT

https:/mwww.ait.de/en/deep-learning/



https://www.ait.de/en/deep-learning/
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Wy Generative Models
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= Type of Machine learning models that can generate something new (image/text) after

learning from a set of existing (image/text) data.

» Generative Adversarial Networks (GAN) : used for generating images/texts

= GAN has two important components :
= Generator
= Discriminator

checking

sy,
Real money m

6\3\\“% Discriminator

Real images Sample

> Discriminator
— Generator > Sample

ss0|
Jojeulwiasiq

sS0|
IS CIETEL)

Random input

Fake money
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Generative Adversarial Networks GAN

= Discriminator : The discriminator learns to distinguish the generator's fake data from real data. The discriminator

penalizes the generator for producing implausible results.

= @Generator : The generatorlearns to generate plausible data. The generated instances become negative training

examples for the discriminator.

= When training begins, the generator produces obviously fake data, and the discriminator quickly learns to tell thatit's fake:

Generated Data Discriminator Real Data

N . FAKE REAL — _ _[=

= As training progresses, the generator gets closer to producing output that can fool the discriminator:

10 . FAKE

= Finally, if generator training goes well, the discriminator gets worse at telling the difference between real and fake. It starts to

classify fake data as real, and its accuracy decreases.

REAL

Source : developers.google.com
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] from reinforcement
Machine Learning =t s TR ACTION SELECTION
) @ @s Training A 2 "‘ # L e v’.: Yo e O | ( .
=Supervised & . . *%f O-YH—»| ENVIRONMENT |
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INPUTS] ) ‘."(;" }‘ [ _DRGSN. ‘ .{i% %:; »||| FAKE aATAl- |
N Y 1Y) _ GENERATOR_
\ F ¥ FEEDBACK
Large Language Models TEXT COMPLETION |
... to massive natural
language models that TRANSLATION ]
can perform a wide TEXT
range of language- CORPUS
relatad tasks. ~ QUESTION ANSWERIHG]

SENTIMENT ANALYSIS ]

2/12/2024
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Issues: Stereotyping, Biased
data, etc.

Trustworthy Al

Generative Al
Challenges

Lake of Openness: Data came
from, data auditing, Sort of
processing step, testing

Robustness

Quality, Accuracy, Reliability,

2/12,

Al Hallucination

Al Bullying

Al Copyright

Privacy
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Trustworthy Al
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Al Governance
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= A cross-functional working group
oversees and advances the
program.

= We leverage our existing [SO-
certified data privacy and security

risk management processes.

Foundation Al
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models are

Foundation general-

purpose technologies that can
support a diverse range of use cases.
Building foundation models is often
highly resource-intensive, with the
most expensive models costing
hundreds of millions of dollars to pay

for the underlying data and compute

= An Al model trained on data that
looks real but won't leak personal
information -

» The latest Al safety method is a

throwback to our maritime past.
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Artificial Intelligence Society
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Society 1.0
S & Hunting & = Society 5.0 was proposed in the 5th Science and Technology Basic
New society [ - e , ,
= 2 e I e 2 e, \ Plan as a future society that Japan should aspire to.
Society 5.0” - -
© = '?8.0. = |t follows the hunting society (Society 1.0), agricultural society
"‘H-.nomoo:ow"’:’ A
\°°°°°,;,i LRt Society 20 (Society 2.0), industrial society (Society 3.0), and information
! ol society (Society 4.0).
Sl
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Society 4.0 O ' ' ' Society 3.0
Information Industrial

\__/

= |n Society 5.0, however, people, things, and systems are

all connected in cyberspace and optimal results
obtained by Al exceeding the capabilities of humans are
fed back to physical space.

= This process brings new value to industry and society in

ways not previously possible.

Current information society (4.0)

Cloud "+

Person access, and retrieve and
analyze the information.

ﬁ ‘rm {l”
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Apersonsearches  Apersonanalyze  Robots produce
by navigation Information under control
system nac of human



https://www8.cao.go.jp/cstp/english/society5_0/index.html
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