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A B S T R A C T   

Excessive exposure to ambient light at night is a well-documented hazard to human health, yet analysts have not 
examined it from an environmental justice (EJ) perspective. We conducted the first EJ study of exposure to light 
pollution by testing for socially disparate patterns across the continental United States (US). We first calculated 
population-weighted mean exposures to examine whether ambient light pollution in the US differed between 
racial/ethnic groups. We then used multivariable generalized estimating equations (GEEs) that adjust for 
geographic clustering to examine whether light pollution was distributed inequitably based on racial/ethnic 
composition and socioeconomic status across US neighborhoods (census tracts). Finally, we conducted a strati-
fied analysis of metropolitan core, suburban, and small city–rural tracts to determine whether patterns of 
inequity varied based on urban-rural context. We found evidence of disparities in exposures to light pollution 
based on racial/ethnic minority and low-to-mid socioeconomic statuses. Americans of Asian, Hispanic or Black 
race/ethnicity had population-weighted mean exposures to light pollution in their neighborhoods that were 
approximately two times that of White Americans. GEEs indicated that neighborhoods composed of higher 
proportions of Blacks, Hispanics, Asians, or renter-occupants experienced greater exposures to ambient light at 
night. Stratified analyses indicated that those patterns of inequity did not substantially vary based on urban-rural 
context. Findings have implications for understanding environmental influences on health disparities, raise 
concerns about the potential for a multiple environmental jeopardy situation, and highlight the need for policy 
actions to address light pollution.   

1. Introduction 

Concerns about pollution overburdening disadvantaged groups in 
the United States (US) catalyzed the environmental justice (EJ) move-
ment and motivated activists, researchers, and policymakers for nearly 
forty years. EJ emphasizes social equitability, both in terms of envi-
ronmental quality and access to environmental decision-making pro-
cesses (Bryant, 1995). EJ analyses initially focused on the sociospatial 
distribution of toxic pollution, providing evidence for disparate expo-
sures based on minority racial/ethnic and low socioeconomic statuses 
(Brulle and Pellow, 2006; Nadybal et al., 2020). A United Church of 
Christ (UCC, 1987) sponsored study was the first to identify a positive 
relationship between racial/ethnic minority composition and the num-
ber of toxic waste facilities across US postal code areas. The initial EJ 
analyses that followed also focused on toxic waste, by examining 
proximity to landfills and Superfund sites (i.e., contaminated areas 

needing long-term remediation) (Brown, 1995; Bullard, 2000; Cutter, 
1995). The field then expanded to examine unequal exposure to air 
pollution (Ard, 2015; Collins et al., 2015; Grineski et al., 2007; Maantay, 
2007). EJ studies of toxic waste and air pollution provided over-
whelming evidence that racial/ethnic minority and 
economically-deprived populations experienced disparate exposures. 

Over the past decade, studies have expanded the scope of the EJ field 
by examining social inequities in access to environmental amenities and 
in exposures to a broader range of technological hazards. In terms of 
environmental amenities, EJ analysts have documented inequities in 
access to parks, beaches, and green space based on indicators of social 
disadvantage (Dahmann et al., 2010; Montgomery et al., 2015; Sister 
et al., 2010). With the increasing salience of climate change-related 
hazards such as urban heat and flooding, an emergent line of EJ 
research has found that racial/ethnic minority and lower socioeconomic 
statuses are associated with exposures to higher land surface 
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temperatures (Harlan et al., 2007; Voelkel et al., 2018) and greater 
flooding (Chakraborty et al., 2019; Collins et al., 2019a). Most recently, 
EJ analyses in the US focused on noise pollution have found that 
racial/ethnic minorities live or attend school in louder areas, potentially 
contributing to poorer health and educational outcomes (Casey et al., 
2017; Collins et al., 2019b, 2020). 

While EJ research has expanded in important ways since the late 
1980s, studies have not yet evaluated potential social inequities in 
exposure to ambient (i.e. outdoor) light at night. This is despite the fact 
that the excessive use of artificial light at night is an emergent, rapidly 
intensifying environmental hazard known to disturb sleep patterns, 
trigger mental illnesses, and increase risks of various cancers in humans 
(Anisimov, 2006; Gaston et al., 2013; Haim and Portnov, 2013; H€olker 
et al., 2010). In order to improve knowledge and practice, it is important 
to assess whether the distribution of light pollution reflects the socially 
inequitable patterns observed for other environmental hazards. 

1.1. Light pollution: an emergent environmental health hazard 

The use of artificial lighting at night is a relatively recent develop-
ment. Electric lighting was first created in 1879 and has since been used 
to increase time for economic and recreational activities, promote a 
greater sense of safety, and ensure efficient transportation in commu-
nities (Chepesiuk, 2009; Doleac and Sanders, 2015; Falchi et al., 2019; 
Haim and Portnov, 2013; Reiter et al., 2007; Sullivan and Flannigan, 
2002). The benefits of artificial lighting clarify why it is widely used 
throughout the world and help to explain its increasing presence in 
residential, recreational, and commercial environments (Kyba et al., 
2017). Increases in the usage of artificial light at night are evident from 
analyses of remotely-sensed images, which indicate that upwards of 
80% of the world’s population live under night skies that have been 
artificially brightened (Cinzano et al., 2001; Falchi et al., 2016a; Rabaza 
et al., 2010). While spatial variations related to physical geography, 
economic productivity, and regional governance of lighting may influ-
ence the distribution of ambient light at night, artificial lighting has 
become a prevalent feature across much of the modern world. 

Ambient light pollution, or the excessive usage of outdoor artificial 
lighting at night, is one of the fastest growing and most pervasive haz-
ards in the contemporary environment (Chepesiuk, 2009). Much of the 
concern about ambient light pollution stems from its impact on human 
health, as increased personal exposure to artificial lighting is associated 
with severe ailments. Chronodisruption, or the disruption of organisms’ 
circadian rhythms, is among the most important impairments. Humans 
are diurnal creatures that have physiologically adapted to the natural 
progression of day and night. This adaptation has led to the development 
of a network of neurons in the brain that is responsible for regulating 
physiological responses to light exposure (Bedrosian and Neslon, 2017; 
Reiter et al., 2009; Smolensky et al., 2015). These responses—which 
encompass neuronal activities (Escobar et al., 2011; Reiter et al., 2009), 
brain wave patterns (Chepesiuk, 2009), cell regulation (Chepesiuk, 
2009), and the production and secretion of hormones (Haim and Zubi-
dat, 2015; Kantermann and Roenneberg, 2009; Reiter at al., 2011)— 
naturally occur during periods of daylight but can be disrupted by 
exposure to artificial light at night. 

Decreased melatonin levels cause the most severe ailments related to 
chronodisruption. Melatonin, the hormone responsible for regulating 
humans’ sleep-wake patterns, requires extended periods of darkness for 
production and circulation throughout the body (Kanterman and 
Roenneberg, 2009; Reiter et al., 2007, 2011). As such, it is difficult for 
humans to maintain regular sleep cycles in light-polluted environments 
(Pauley, 2004; Raap et al., 2015; Smolensky et al., 2015). Sleep disor-
ders associated with reduced melatonin levels are linked to higher rates 
of anxiety, depression (Chepesiuk, 2009), and obesity (Wyse et al., 
2011), which increase human risks for cardiovascular diseases (Eckel 
et al., 1998; Zhou et al., 2000), diabetes (Mokdad et al., 2003), gastro-
intestinal disorders (Delgado-Aros et al., 2004; Donohoe et al., 2010), 

and neurological ailments such as strokes and multiple sclerosis 
(Hedstr€om et al., 2012; Winter at al., 2008). 

Earlier research on artificial light and human health focused on in-
dividuals’ nighttime exposures within indoor occupational and resi-
dential settings, and found associations between greater exposures and 
increased cancer risks. Exposures to artificial light at night via shiftwork 
or home-based personal behavior were found to increase women’s risks 
of breast, colorectal and lung cancers (Davis et al., 2001; Hansen et al., 
2001; Kloog et al., 2011; Schernhammer and Hankinson, 2003; 
Schernhammer et al., 2001, 2006, 2013); and men’s risks of prostate, 
lung, colon, bladder and pancreatic cancers (Conlon et al., 2007; 
Papantoniou et al., 2014; Parent et al., 2012). While those studies 
adjusted for covariates and established causal linkages between night-
time light exposure and cancer, they did not consider the effects of 
ambient (outdoor) sources of exposure to artificial light at night. 

A more recent wave of individual-level studies has documented 
human health effects of residential exposure to ambient light at night. 
Most such studies have measured ambient light at night based on resi-
dential locations using Defense Meteorological Satellite Program 
(DMSP) imagery. Several studies found associations between greater 
ambient light at night and increased risks for breast cancer in women, 
adjusting for factors such as race, income, and familial history of breast 
cancer (Bauer et al., 2013; Hurley et al., 2014; James et al., 2017). 
Garcia-Saenz et al. (2018) found that men and women residing in 
brighter areas of Barcelona and Madrid, Spain, were at a higher risk for 
prostate and breast cancer when compared to residents living in darker 
areas. In an individual-level analysis of sleep duration in middle-to-older 
aged adults in the US, Xiao et al. (2020) found that higher levels of 
ambient light at night predicted shorter periods of sleep, controlling for 
other relevant factors. 

Ecological studies of ambient light at night—i.e., analyses using 
aggregated population data to examine the group-level effects of expo-
sures to outdoor light pollution—have produced results similar to those 
from individual-level studies of indoor and outdoor exposures. Several 
global analyses of light pollution using DMSP nighttime imagery found 
strong associations between ambient light at night and breast cancer in 
women (Kloog et al., 2008; Rybnikova et al., 2015) and prostate cancer 
in men (Kloog et al., 2009; Rybnikova et al., 2017), adjusting for vari-
ables such as income, urbanicity, and electricity consumption. In studies 
of South Korea, Kim et al. (2015, 2017) found that higher levels of 
ambient light at night predicted increased risks for breast cancer in 
women and prostate cancer in men. In a neighborhood (census tract) 
level analysis of ambient light pollution (using DMSP imagery) in Con-
necticut, USA, Portnov et al. (2016) found that women residing in 
brighter neighborhoods had an increased risk for breast cancer, adjust-
ing for factors such as urbanicity, poverty level, and fertility rate. 

Given the well-documented human health effects of light pollution, 
there is a clear gap in knowledge pertaining to potential social inequities 
in exposure. There are three reasons why we hypothesize that racial/ 
ethnic minority status and low socioeconomic status relate to dispro-
portionate exposure to light pollution. First, the EJ literature has 
documented how locally unwanted land use activities—some of which 
emit high levels of artificial nighttime light—cluster in socially disad-
vantaged US communities where minority and low-income residents 
concentrate. Second, with knowledge of the human and ecological im-
pacts of light pollution expanding over the past two decades, artificial 
nighttime light from a societal perspective has become increasingly 
undesirable. It is plausible that the treatment of nighttime darkness as an 
environmental amenity and the implementation of “dark sky” ini-
tiatives—almost exclusively in privileged US communities where White 
and affluent residents concentrate—has influenced social inequities in 
exposure to light pollution. Third, US society has long criminalized 
particular racial/ethnic minority groups, and it is possible that this has 
served to justify the deployment of greater artificial lighting in socially 
disadvantaged neighborhoods as a means to support nighttime policing 
and surveillance by law enforcement authorities. 
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This paper aims to extend knowledge by quantifying social inequities 
in exposure through the first EJ assessment of ambient light pollution. 
We conducted a cross-sectional analysis of disparities in exposure based 
on remote sensing-derived measures of light pollution across the conti-
nental US and a stratified analysis of metropolitan core, suburban, and 
rural neighborhoods. We addressed three questions: (1) How does the 
population-weighted mean exposure to ambient light pollution differ 
between racial/ethnic groups in the US? (2) Is ambient light pollution in 
the US distributed inequitably at the neighborhood (census tract) level 
with respect to racial/ethnic composition and socioeconomic status 
(SES), after adjusting for geographic clustering and relevant variables? 
(3) How do patterns of inequity in the distribution of ambient light 
pollution in the US vary across the urban-rural continuum? 

2. Methods and materials 

2.1. Study population 

We downloaded publicly available data from the US Census Bureau 
website on the geographic boundaries and sociodemographic composi-
tion of census tracts in the lower 48 states and Washington, DC. We used 
2012–2016 ACS five-year estimates because they include all variables of 
analytical interest and center on 2014—the year The new world atlas of 
artificial night sky brightness (hereafter denoted as the “atlas”) most 
recently calculated light pollution estimates (Falchi et al., 2016a). As per 
many other US-based EJ studies, we selected the census tract as our 
analysis unit since it represents the finest scale for which reliable ACS 
five-year estimates are available. We excluded census tracts with less 
than 500 residents and incomplete data to ensure stable proportional 
estimates for all variables, and included data for 70,358 census tracts in 
our analysis. 

2.2. Dependent variable 

We measured artificial light at night using spatial data from the atlas 
(Falchi et al., 2016a, 2016b). The atlas defines light pollution as any 
level of radiance surpassing 174 μcd/m2 (i.e., 0.174 mcd/m2), as this is 
the natural level of light present in the night sky during zenith. To 
measure ambient light at night, the atlas used low-light imaging data 
from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night 
band (DNB) sensor aboard the Suomi National Polar-orbiting Partner-
ship (NPP) satellite. The DNB sensor achieves global coverage of light 
pollution with a swath width of 3000 km and a spatial resolution of 742 
m. At the time of writing, data from the VIIRS DNB sensor had better 
linear resolution and range than any other satellite instrument used to 
measure nocturnal radiance (Falchi et al., 2016a, 2016b). Additionally, 
VIIRs DNB incorporates the use of in-flight calibration, a higher spatial 
resolution and bit quantization, and has a more dynamic range when 
compared to other satellite instruments used in light pollution-health 
studies (Elvidge et al., 2013). 

Clouds, lightning, and fires can obstruct remote sensing observations 
of artificial light at night. To produce spatially comprehensive nocturnal 
light measures, the atlas incorporated the use of composite products 
created by the Earth Observation Group (EOG) at the US National 
Oceanic and Atmospheric Administration’s National Centers for Envi-
ronmental Information (Baug et al., 2013). These composite products 
were generated as monthly 15-arcsecond grids, with each grid cell 
representing the average radiance value calculated by the DNB sensor. 
The composite products only included DNB data from cloudless nights 
that were unaffected by moonlight or other forms of ephemeral lighting, 
as this ensured the most accurate measurements of artificial light 
pollution. Composite products for May, June, September, October, 
November, and December of 2014 were then combined into one 
6-month composite, also generated as a 15-arcsecond grid, for sky 
brightness modeled by the atlas. Each grid cell within the 6-month 
composite represented the average radiance value. In order to increase 

the accuracy of light pollution estimates, data from the DNB composite 
product were propagated through the atmosphere using a radiative 
transfer code (Falchi et al., 2016a, 2016b). The radiative transfer code 
assisted in calibrating raw light pollution estimates to account for how 
artificial light at night travels through Earth’s atmosphere. Falchi et al. 
(2016a, 2016b) and Cinzano and Falchi (2012) provide detailed infor-
mation on the radiative transfer code and upward emission function as 
well as the specific calibrations used. The atlas data used for our analysis 
were available as a 30-arcsecond grid (Falchi et al., 2016a, 2016b). 

To create our dependent variable for analyzing social inequities in 
light pollution exposure across US census tracts, we overlaid the artifi-
cial radiance data from the atlas onto census tract boundaries using 
ArcGIS Pro (Esri, 2019). We then used zonal statistics to determine the 
mean artificial radiance value of the atlas light pollution pixels within 
each census tract. Zonal statistics allow for the calculation of statistics 
within user-defined zones, such as census tracts, based on values from a 
supplementary dataset, such as the atlas light pollution grid. We used the 
polygon containment approach, which required each light pollution 
pixel to be completely contained by a census tract boundary for inclu-
sion in the calculation of mean artificial radiance. To minimize the 
impact of boundary effects based on polygon containment and ensure 
that every census tract contained at least one atlas light pollution pixel 
for calculating mean artificial radiance using zonal statistics, we reduced 
the cell size of the light pollution pixels from 30-arcsecond (i.e., approx. 
926-by-712 m) to 88-by-88 m. Units for our dependent variable are 
reported in mcd/m2 (Falchi et al., 2016b). 

To illustrate the zonal statistics procedure, Fig. 1 shows raw pixel 
data and the output from the zonal statistics process for Los Angeles 
County, California. It reveals a high degree of correspondence between 
the raw radiance grid values from the atlas (Fig. 1, left) and the resulting 
measure of mean radiance assigned to census tracts (Fig. 1, right). To 
enable visual comparison, the map of census tracts (Fig. 1, right) uses 
quantile (octile) classification and the map of raw grid values (Fig. 1, 
left) uses the same breaks to classify the raw atlas light pollution values 
into eight categories. Note that the atlas dataset only gauges artificial 
brightness (i.e., values that surpassed the 174 μcd/m2 threshold used to 
define light pollution). Thus, our dependent variable represents a census 
tract-level measure of mean ambient light pollution, capturing artificial 
nighttime radiance values above the 174 μcd/m2 threshold. 

2.3. Independent variables: racial and ethnic composition 

Our analysis included variables for the proportions of residents 
identifying as non-Hispanic Black, Hispanic/Latino, non-Hispanic Asian, 
non-Hispanic American Indian or Alaskan Native, non-Hispanic Native 
Hawaiian or Pacific Islander, and non-Hispanic Multi-/other race in 
each US census tract (we hereafter remove “non-Hispanic” from refer-
ences to each minority group) (US Census Bureau, 2017a). We excluded 
the proportion of non-Hispanic White residents from the multivariable 
models, such that results for the racial/ethnic minority group variables 
would be interpretable relative to the proportion of tract residents who 
identified as White. We calculated the proportion variable for each 
racial/ethnic group by dividing the population count for each group by 
the total population in each respective census tract. 

2.4. Independent variables: socioeconomic status (SES) 

To analyze the effect of SES on exposure to light pollution, we 
included the proportion of renter-occupied housing units (US Census 
Bureau, 2017b) and median household income (US Census Bureau, 
2017c) in our multivariable modelling (addressing our second and third 
questions). Renter-occupancy status is often included in EJ studies 
because it represents greater housing instability when compared to 
owner-occupancy. Additionally, renters often experience decreased po-
litical power and lack the resources necessary to reduce their environ-
mental exposures (Pastor et al., 2005). We included median household 
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income in our analysis because it pertains directly to wealth, power, and 
the political influence of a neighborhood. The ACS provides this variable 
at the census tract level. In our multivariable modelling, we included a 
median household income squared term to account for the possibility of 
a curvilinear relationship between hazard exposure and income. Such 
relationships may be attributed to the fact that lower-income neigh-
borhoods often lack economic activities, and may therefore have fewer 
sources of light pollution, while higher-income neighborhoods have the 
resources necessary to protect themselves from sources of acute light 
pollution. Thus, middle-income neighborhoods may be disproportion-
ately exposed to particular anthropogenic hazards (Collins et al., 2017; 
Pastor et al., 2005). 

2.5. Control variables 

Because artificial lighting is concentrated in urban environments, we 
included variables in our multivariable modelling (addressing our sec-
ond and third questions) to account for the level of urbanization. We 
gauged population density by dividing the total tract population by the 
area of the tract in square kilometers. Additionally, we adjusted for 
urban effects by defining clusters of tracts within counties based on the 
age of the housing stock (described below). In our full model (addressing 
our second question), we also included categorical variables to adjust for 
the location of tracts along the urban-rural continuum based on the US 
Department of Agriculture’s Rural-Urban Commuting Area (RUCA) 
primary codes (USDA, 2019). There are 10 codes: code 1 represents 
metropolitan core contexts, codes 2–3 represent metropolitan area 
suburban contexts, codes 4–6 represent small city contexts, and codes 
7–10 represent small town and rural contexts. Detailed definitions for 
the RUCA codes are available from the USDA (2019). We excluded 
RUCA code 1 (i.e., metropolitan core tracts) from the full model and 
treated it as the reference group because it included the majority of 
tracts in the analysis; thus, results for all RUCA codes in our full model 
are interpretable in reference to RUCA code 1. We also used the RUCA 
codes to define the strata to examine research question 3 (described 
below). 

2.6. Analysis: population-weighted mean exposure to ambient light 
pollution 

To address our first question, we calculated the national population- 
weighted mean exposure to ambient light pollution at night for each 
racial/ethnic group, based on population counts for each group in each 
census tract. We did this by multiplying the total number of people in 
each racial/ethnic group in each census tract by the mean radiance 
(ambient light at night) in each respective census tract, and then sum-
ming those values across all tracts before dividing by the total US pop-
ulation for each group. Population-weighted mean calculations are used 
in EJ studies because they clearly describe the actual (unadjusted) 
environmental exposures for specific demographic groups, allow for the 
reliable examination of groups with small counts, and create a point of 
comparison for modelling techniques that include additional variables 
of relevance (Clark et al., 2014; Collins et al., 2017; Grineski et al., 2017; 
Rubio et al., 2020). 

2.7. Analysis: multivariable generalized estimating equations 

We used generalized estimating equations (GEEs) to assess social 
inequities in light pollution while adjusting for the effects of geographic 
clustering and other variables. To address our second question, we 
specified a full model with all continental US census tracts that met our 
inclusion criteria (n ¼ 70,358); this GEE included RUCA codes 2–10 as 
control variables for urban-rural context. To address our third question, 
we stratified census tracts into three subgroups—metropolitan core 
tracts (RUCA code 1; n ¼ 50,200), suburban tracts (RUCA codes 2–3; n 
¼ 7333), and small city–rural tracts (RUCA codes 4–10; n ¼ 12,825)— 
and then specified separate GEEs for each subgroup. Other national EJ 
analyses have applied similar census tract stratification approaches 
based on RUCA codes (e.g., Bravo et al., 2016). 

GEEs extend the generalized linear model to accommodate clustered 
and non-normally distributed data (Liang and Zeger, 1986). For our full 
and subgroup models, we defined clusters of census tracts based on the 
median year of housing construction category (i.e., “2000 or later”, 
“1990 to 1999”, “1980 to 1989”, “1970 to 1979”, “1960 to 1969”, “1950 
to 1959”, “1940 to 1949”, and “1939 or earlier”) by county, which led to 
a total of 10,537 clusters. We selected this cluster definition because it 

Fig. 1. An example of the zonal statistics operation in Los Angeles County, California. Note: Map on left shows raw radiance grid values. Map on right shows resulting 
mean radiance values for census tracts. Hatch patterns (right) represent census tracts excluded due to low population counts. 
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corresponds with the residential development contexts wherein census 
tracts are nested; e.g, within older central cities vs. newer urban fringe 
areas, which differ in terms of light pollution. Additionally, this cluster 
definition is appropriate because it relates to the historical and 
geographical formation of environmental injustices. For example, in 
many parts of the US, institutional racism in housing and urban devel-
opment have influenced minority groups to experience concentrated 
poverty in older central city neighborhoods, and enabled privileged 
Whites to pursue affluent lifestyles in newer housing developments 
along the expanding urban fringe (Bolin et al., 2005; Davis, 2006; 
Pulido, 2000). Several recent distributive EJ studies have used this 
cluster definition based on similar logic (Collins et al., 2017, 2019b, 
2020). 

GEEs require the specification of an intracluster dependency corre-
lation matrix, a distribution, and a link function (Liang and Zeger, 
1986). Three correlation matrix specifications were potentially appro-
priate: independent, exchangeable, and unstructured. Based on the 
distributions of the variables, three GEE distributions and two link 
functions were candidates: normal, gamma, inverse Gaussian or Twee-
die (index parameter ¼ 1.5; i.e., compound Poisson-gamma) distribu-
tions, with identity or logarithmic (log) link functions. We estimated a 
series of GEEs using the independent variables to predict artificial light 
at night using all possible combinations of those correlation matrices, 
distributions, and link functions. We then used quasi-likelihood under 
the independence model criterion (QIC) goodness-of-fit measures to 
determine the best fitting specification. For the full model, an unstruc-
tured correlation matrix with a gamma distribution and log link function 
fit best. The best fitting specification for the metropolitan core subgroup 
model was an unstructured correlation matrix, inverse Gaussian distri-
bution, and log link function. For the suburban subgroup model, the best 
fitting specification was an unstructured correlation matrix, normal 
distribution, and identity link function. For the small city–rural sub-
group model, an exchangeable correlation matrix, normal distribution, 
and identity link function was best fitting. Note that comparison of effect 
sizes for specific coefficients between the four models is not permissible, 
due to the different model specifications. 

To assess multicollinearity among the analysis variables, we exam-
ined the variance inflation factor, tolerance, and condition index; these 
values indicated that inferences from all GEEs were unaffected by 
multicollinearity. We standardized all continuous independent variables 
before including them in GEEs to make coefficients directly comparable 
within each model. We define statistical significance as p < 0.05. We 
used IBM SPSS Statistics version 23 to conduct the statistical analyses 
(IBM, 2015). 

3. Results 

3.1. Descriptive analytics 

We present descriptive statistics for all variables in Table 1. Fig. 2 
depicts the spatial distribution of artificial light across continental US 
census tracts. Light pollution is most apparent in the heavily urbanized 
northeastern portion of the country. Additionally, zones of high artificial 
light at night appear along the west coast. While some areas of high 
artificial light at night are present in the central portions of the US, 
particularly in urbanized areas to the east, the west-central portion of 
the country is generally darker than the coastlines. Fig. 3 depicts the 
spatial distributions of the race/ethnicity and SES independent vari-
ables. The geographic distributions of each of the racial/ethnic groups 
indicate regional patterns of representation. While the distributions of 
the SES variables appear less regionally patterned, metropolitan areas 
included tracts with relatively high median household incomes (Fig. 3). 

3.2. Population-weighted mean exposure to ambient light at night 

Fig. 4 reports the results for the analysis of population-weighted 

mean exposure to ambient light at night in mcd/m2, addressing our 
first question. Each racial/ethnic group, along with the national 
average, is listed in rank order from high-to-low for mean exposure to 
ambient light at night. Asians had the highest population-weighted 
mean exposure to ambient light pollution (4.134 mcd/m2), followed 
by Hispanics (3.988), Blacks (3.970) and Native Hawaiian/Pacific Is-
landers (3.061). American Indian/Alaskan Natives had the lowest 
population-weighted mean levels of exposure (1.371 mcd/m2), followed 
by the Multi-/other race group (1.498), and Whites (2.000). 

Given that the national average for population-weighted mean 
exposure to ambient light at night was 2.703 mcd/m2, Asians, Hispanics, 
Blacks, and Native Hawaiian/Pacific Islanders respectively had 52.9%, 
47.5%, 46.9%, and 13.24% higher than average levels of exposure. Most 
groups also exhibited a higher risk for exposure to ambient light pollu-
tion when compared to the Whites specifically. For example, exposure 
levels for Asians, Hispanics, Blacks, Native Hawaiian/Pacific Islanders 
were respectively 106.7%, 99.4%, 98.5%, and 53.1% higher than the 
population-weighted mean exposure for Whites. Only American Indian/ 
Alaskan Natives and those of Multi-/other race had lower population- 
weighted mean exposures than Whites. 

3.3. Full multivariable model predicting neighborhood-level ambient light 
at night 

Table 2 reports the results of the GEE predicting exposure to light 
pollution across US census tracts, addressing our second question. Re-
sults in the Exp(B) column, after subtracting one and multiplying by 
100, are interpretable as the percentage change in exposure to ambient 
light at night per one standard deviation increase in each of the inde-
pendent variables. Results for the race/ethnicity variables generally 
indicate greater exposure to light at night. Specifically, one standard 
deviation increases in the proportions of Black, Hispanic, Asian, and 
Multi-/other race residents in census tracts were respectively associated 
with 20.9%, 15.0%, 8.1%, and 1.2% increases to ambient light at night 
(p < 0.01). As an exception, an increase in the proportion of Native 
Hawaiian/Pacific Islander residents was associated with a small but 
significant decrease in ambient light at night (p < 0.01). 

We found that an increase in the proportion of renter-occupants 
within census tracts was associated with significantly greater light 

Table 1 
Descriptive statistics for variables analyzed, continental United States census 
tracts (n ¼ 70,358).  

Continuous Variables Min. Max. Mean St. Dev. 

Mean Radiance (mcd/m2) 0.0003 33.973 2.813 2.922 
Proportion Black 0.00 1.00 0.135 0.218 
Proportion Hispanic 0.00 1.00 0.157 0.209 
Proportion Asian 0.00 0.91 0.045 0.085 
Proportion AIAN 0.00 1.00 0.007 0.043 
Proportion NHPI 0.00 0.17 0.001 0.005 
Proportion Multi-/Other Race 0.00 0.43 0.024 0.026 
Proportion White 0.00 1.00 0.630 0.299 
Proportion Renter 0.00 1.00 0.370 0.227 
Median Household Income (2016 US$) 3250 249,597 58,898 29,052 
Population Density (people/km2) 0.219 508,697 5224 11,803 
Dichotomous Variables Min. Max. No (0) Yes (1) 

RUCA Code 1 0 1 20,158 50,200 
RUCA Code 2 0 1 63,675 6683 
RUCA Code 3 0 1 69,708 650 
RUCA Code 4 0 1 66,217 4141 
RUCA Code 5 0 1 68,409 1949 
RUCA Code 6 0 1 69,950 408 
RUCA Code 7 0 1 68,236 2122 
RUCA Code 8 0 1 69,541 817 
RUCA Code 9 0 1 70,017 341 
RUCA Code 10 0 1 67,311 3047 

Note: AIAN ¼ American Indian or Alaska Native; NHPI ¼ Native Hawaiian or 
Pacific Islander. 
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pollution, such that a one standard deviation increase in the tract pro-
portion of renter-occupants was associated with a 38.8% increase in the 
level of ambient light at night (p < 0.001). We also found that median 
household income was a significant nonlinear predictor of exposure to 
artificial light at night, whereby lower and higher levels of income at the 
census tract level were associated with lower levels of light pollution and 
middle levels of income were associated with increased exposure to 
ambient light at night (p < 0.001). In terms of the inflection point, the 
curve starts to descend (indicating lowering light pollution) past 
approximately $70,000 median household income. 

Increases in population density were associated with greater ambient 
light at night (p < 0.001). Additionally, when compared to tracts located 
in metropolitan core areas (i.e., RUCA code 1), those in less urbanized 
contexts (RUCA codes 2–10) were associated with large decreases in the 
level of artificial light at night (p < 0.001). 

3.4. Stratified multivariable models predicting neighborhood-level 
ambient light at night 

Table 3 reports the results for the metropolitan core, suburban, and 
small city–rural subgroup GEEs, which address our third question. In 
metropolitan core neighborhoods, one standard deviation increases in 
the proportions of Black, Hispanic, and Asian residents were respec-
tively associated with 21.8%, 13.9% and 13.6% increases in ambient 
light pollution (p < 0.001). A one standard deviation increase to the 
proportion of Native Hawaiian/Pacific Islander residents was associated 
with a 1.2% decrease in ambient light at night (p < 0.01). In terms of 
SES, we found that a one standard deviation increase in tract-level 
renter-occupancy in metropolitan core areas was associated with a 
17.1% increase in artificial light at night (p < 0.001). Median household 
income was positively and linearly related to ambient light such that a 
one standard deviation increase was associated with a 11.2% increase in 
light (p < 0.001). 

In the suburban model, one standard deviation increases in the 
proportions of Black, Hispanic, and Asian residents were respectively 
associated with 0.085, 0.045 and 0.198 mcd/m2 increases in artificial 
light at night (p < 0.001). In terms of SES, a one standard deviation 
increase in renter-occupancy was associated with a 0.084 mcd/m2 in-
crease in ambient light pollution (p < 0.001). Median household income 
followed a similar significant and curvilinear relationship with artificial 
light (p < 0.01) to that exhibited in the full model. 

In our small city–rural model, we found that one standard deviation 
increases in the proportions of Black, Asian, and Multi-/other race res-
idents were respectively associated with 0.087, 0.081, and 0.008 mcd/ 
m2 increases in ambient light pollution (p < 0.01). A one standard de-
viation increase in the proportion of American Indian/Alaskan Native 
residents was associated with a 0.004 mcd/m2 decrease in artificial light 
(p < 0.01). For SES, we found that a one standard deviation increase in 
tract-level renter-occupancy in small city–rural environments was 
associated with a 0.167 mcd/m2 increase in artificial light at night (p <
0.001). A one standard deviation increase in median household income 
was positively and linearly associated with a 0.100 mcd/m2 increase in 
light (p < 0.01). 

4. Discussion 

Our results reveal socially disparate patterns of residential exposure 
to ambient light at night, which is an important finding given that this 
was the first EJ analysis of light pollution. The population-weighted 
mean analysis, which did not adjust for the effects of geographic clus-
tering or other variables, indicated that, in rank order, Asians, Hispanics, 
Blacks, and Native Hawaiian/Pacific Islanders in the US experienced 
substantially greater neighborhood exposures to ambient light at night 
than Whites. In terms of our multivariable GEEs, we found that higher 
proportions of Black or Asian residents were associated with signifi-
cantly higher levels of artificial light at night across all US census tracts, 
and in metropolitan core, suburban and small city–rural strata. Higher 
proportions of Hispanic residents were positively associated with light in 
all four models and the associations were significant in the full, metro-
politan core and suburban models. Those findings generally align with 
EJ studies examining air and road transportation noise (Collins et al., 
2020) and air pollution (Grineski et al., 2017). The consistent findings 
for the Black, Asian and Hispanic neighborhood composition variables 
across the bivariate models and the GEEs are of particular importance, as 
they suggest that disparities in exposure to artificial light across the 
continental US may be related more to racial/ethnic status than 
geographic context. 

Unlike Black, Asian and Hispanic populations, Native Hawaiian/ 
Pacific Islander and American Indian/Alaskan Native groups were 
generally less exposed to light than White Americans in the GEE models. 
This trend was statistically significant based on Native Hawaiian/Pacific 
Islander neighborhood composition in metropolitan core areas and in all 

Fig. 2. The spatial distribution of ambient light pollution across continental United States census tracts. Data Source: Falchi et al. (2016b).  

S.M. Nadybal et al.                                                                                                                                                                                                                             



Environmental Research 189 (2020) 109959

7

US tracts, even though their unadjusted, population-weighted mean 
light pollution exposure was above the national average. We found that 
the American Indian/Alaskan Native group was significantly protected 
from light pollution in rural neighborhoods. They also had the lowest 
population-weighted mean light pollution exposure of all groups 
examined. This finding may reflect how American Indian/Alaska Native 
communities have been marginalized within geographically isolated 
and less economically productive rural landscapes, characterized by 

relatively low per capita levels of energy consumption and darker skies 
(Coscieme et al., 2014). 

In terms of SES, the neighborhood prevalence of renter-occupants 
was positively and significantly associated with increased ambient 
light pollution, regardless of where a tract was located along the urban- 
rural continuum. The renter-occupancy finding generally aligns with EJ 
analyses of other hazards in the US. For example, Collins et al. (2020) 
found that air and road transportation noise had disparate impacts based 

Fig. 3. The spatial distribution of sociodemographic analysis variables across continental United States census tracts (n ¼ 70,358). Note: AIAN ¼ American Indian or 
Alaska Native; NHPI ¼ Native Hawaiian or Pacific Islander. 
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on renter-occupancy across US census tracts. 
We found a curvilinear relationship between neighborhood median 

household income and ambient light pollution in the full and suburban 
models. Other EJ studies found something similar whereby middle- 
income neighborhoods shouldered the greatest exposures to hazardous 
waste and air pollution (Boer et al., 1997; Chakraborty et al., 2014; 
Morello-Frosch et al., 2001). The dip in light pollution we found at 
high-income levels is likely due to the location of exclusive, affluent 
enclaves (e.g., master-planned communities), outside of central cities on 
the darker metropolitan fringes, within suburban/exurban contexts. In 
metropolitan core and small city–rural tracts, the pattern differed such 
that greater income linearly predicted increasing ambient nighttime 
light, which we did not expect based on the EJ literature. A separate 
literature using remote sensing-based measures, however, has associ-
ated greater nighttime light with increased population density, greater 
wealth and economic activity, less poverty, and increased nonrenewable 
energy consumption at coarse spatial scales (Coscieme et al., 2014; 
Elvidge et al., 2009, 2012; Ghosh et al., 2010; Sutton et al., 1997). Given 
that our models adjust for population density and renter-occupancy, our 

finding in metropolitan core contexts may be attributable to increased 
economic activity and energy consumption in and around 
higher-income central city neighborhoods as well as the prevalence of 
relatively high income renter-occupants in specific high-light residential 
settings (e.g., in downtown multi-unit complexes). In small city–rural 
contexts, our finding was likely influenced by increased economic ac-
tivity in higher-income neighborhoods nearer to town centers as well as 
higher poverty rates and reduced per capita energy consumption (e.g., 
from a lack of public street lighting) in more isolated, lower-income 
rural settings. While our findings across the urban-rural strata were 
remarkably similar, distinctions such as those based on income are 
important because they suggest the role of geographic context in 
moderating particular social-light pollution relationships. 

There are several possible explanations for the light pollution in-
equities we found. First, the US-based EJ literature has documented a 
concentration of residentially undesirable land use activities, which 
often emit high levels of artificial light at night, within Black, Hispanic 
and Asian communities (Pais et al., 2013; Cutter, 1995; Bullard, 2000; 
Grineski et al., 2017). Second, as artificial nighttime light becomes 
increasingly undesirable, darkness emerges as an environmental ame-
nity, and desires to promote darker skies become more influential in 
planning initiatives (City of Los Angeles, 2009; Daley, 2007, 2010; 
Mikyoung, 2008; Newell et al., 2013), privileged rather than socially 
disadvantaged neighborhoods are more likely to experience darkened 
nights. Our results indicate that neighborhoods with high rates of 
owner-occupancy experience darker nights than those with a high 
prevalence of renter-occupants, likely due to the collective power of 
homeowners to repel sources of acute light pollution from their neigh-
borhoods (Pastor et al., 2005). We also presume that our nonlinear 
findings for reduced light pollution at the higher-end of the income 
distribution (esp. in suburban areas) are suggestive of a trend that will 
accentuate in the future, given the increasing social desirability of dark 
nights. Third, the criminalization of particular US racial/ethnic minority 
groups (e.g., Black and Hispanic Americans) and efforts to control their 
populations through urban design (Davis, 2006; Gomberg-Mu~noz, 2012; 
Muhammad, 2019)—specifically through the deployment of artificial 
lighting to facilitate nighttime policing and surveillance by law 
enforcement authorities—may also explain disparities in exposure to 
light pollution. 

The disparities we identified in neighborhood exposure to ambient 
light at night may foster improved understanding of health disparities 
across the US. Because light pollution has well-established links with 
human health problems—including sleep impairment (Pauley, 2004; 
Raap et al., 2015), sleep-deficiency related issues such as diabetes 
(Mokdad et al., 2003), gastrointestinal disorders (Delgado-Aros et al., 
2004; Donhoe et al., 2010), cardiovascular disease (Eckel et al., 1998; 
Zhou et al., 2000), and various forms of cancer (Davis et al., 2001; 
Hansen, 2001; Kloog et al., 2010)—future research should seek to 

Fig. 4. Population-weighted mean exposure to ambient light pollution for racial/ethnic groups in the continental United States in mcd/m2 (n ¼ 310,323,507 people).  

Table 2 
Results of generalized estimating equation predicting ambient light pollution for 
continental United States census tracts (n ¼ 70,358).  

Parameter Beta Exp(B) 95% CI p-value 

Intercept 0.974 2.647 0.946, 1.002 <0.001 
Proportion Black 0.190 1.209 0.176, 0.203 <0.001 
Proportion Hispanic 0.140 1.150 0.122, 0.157 <0.001 
Proportion Asian 0.078 1.081 0.067, 0.089 <0.001 
Proportion AIAN � 0.020 0.981 � 0.046, 0.007 0.153 
Proportion NHPI � 0.009 0.991 � 0.016, � 0.003 0.005 
Proportion Multi-/Other Race 0.012 1.012 0.004, 0.020 0.003 
Proportion Renter 0.251 1.286 0.231, 0.272 <0.001 
Med. Household Income 0.280 1.323 0.237, 0.323 <0.001 
Med. Household Income Sq. � 0.113 0.893 � 0.144, � 0.082 <0.001 
Population Density 0.180 1.197 0.151, 0.208 <0.001 
RUCA Code 2 � 1.555 0.211 � 1.619, � 1.492 <0.001 
RUCA Code 3 � 2.166 0.115 � 2.248, � 2.084 <0.001 
RUCA Code 4 � 1.130 0.323 � 1.174, � 1.086 <0.001 
RUCA Code 5 � 2.358 0.095 � 2.419, � 2.297 <0.001 
RUCA Code 6 � 2.325 0.098 � 2.432, � 2.219 <0.001 
RUCA Code 7 � 1.950 0.142 � 2.001, � 1.899 <0.001 
RUCA Code 8 � 2.864 0.057 � 2.940, � 2.788 <0.001 
RUCA Code 9 � 2.577 0.076 � 2.656, � 2.498 <0.001 
RUCA Code 10 � 3.002 0.050 � 3.074, � 2.930 <0.001 

Note: AIAN ¼ American Indian or Alaska Native; NHPI ¼ Native Hawaiian or 
Pacific Islander. All continuous predictors were standardized. The model uses an 
unstructured correlation matrix, gamma distribution, and logarithmic link 
function, and adjusts for clustering by county and age of housing stock. Racial/ 
ethnic minority group variables are interpretable in reference to the proportion 
of White residents. RUCA codes 2–10 are interpretable in reference to RUCA 
code 1 (metropolitan core). 
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determine whether inequitable exposures to artificial light at night in-
fluence and interact with the health disparities experienced by racia-
l/ethnic minority and economically-disadvantaged populations in the 
US. For example, the incidence rate of prostate cancer is dispropor-
tionately high among Black males (Powell, 2007; Tsodikov e al., 2017), 
such that they have a risk of diagnosis that is 1.7 times higher than their 
White male counterparts (Brawley, 2012). Additionally, prostate cancer 
mortality rates are 2.3 times greater among Black men than White men 
residing in the US (Brawley, 2012). African American women experience 
similar health disparities, with their breast cancer incidence rates 
increasing while those for White women have remained stable (DeSantis 
et al., 2017). They are also more likely to develop high-risk breast tu-
mors that are less receptive to modern treatments when compared to 
their White counterparts (Dunn et al., 2010). Those disparities in cancer 
diagnosis and prognosis—particularly in regard to cancers associated 
with light pollution—suggest that socially inequitable exposures to 
artificial light may play some role in extant health disparities in the US. 
To improve understanding, it will be important for future studies to 
assess to the role of uneven exposure to ambient light at night as an 
influence on disparate population-level health outcomes. 

Our findings raise concerns about a multiple environmental jeopardy 
situation, wherein racial/ethnic minority and economically deprived 
communities experience compounding impacts from multiple environ-
mental hazards. Exposures to multiple hazards threaten community 
health and wellbeing, such that inequitable exposures to light at night 
may interact with unequal exposures to other hazards, like air pollution, 
noise, and substandard housing. In such cases, the deleterious human 
effects of other environmental exposures—such as increased risk for 
cancer (Chakraborty et al., 2017) and diabetes (Dendup et al., 2018), or 
impaired academic performance (Grineski et al., 2020)—might be 
magnified by disparate exposures to light pollution. 

Our analysis has several limitations. It was cross-sectional, which 
limited our ability to understand how disparities in exposure to ambient 
light pollution in the US may have developed or changed over time. 
While cross-sectional analyses are useful in identifying pat-
terns—especially in the context of light pollution, which has not previ-
ously been examined from an EJ perspective—it will be important for 
future research to clarify explanations of light pollution disparities 
through historical or longitudinal analyses of specific US cities or re-
gions. Additionally, all currently available global low-light imaging data 
used in light pollution analyses are blind in the blue range of the visible 
light spectrum. This means that the VIIRs DNB measurements of lighting 
used in this analysis may underestimate the severity of ambient light 
pollution. The VIIRs DNB sensor also does not account for the 

attenuation of light pollution that may occur due to quality of residential 
structures or indoor behaviors with respect to artificial light at night. We 
acknowledge that our measurement of ambient light at night does not 
serve as a proxy for all forms of individual exposure to light pollution, 
and future research would benefit from examining social disparities in 
exposure to light pollution with individual-level data that account for 
multiple forms of exposure. Nevertheless, the estimates of ambient light 
at night we employed were the best available for the US and they are of a 
finer spatial resolution than the estimates used in prior health analyses 
of exposure to ambient light pollution. 

5. Conclusions 

This was the first distributive EJ analysis of exposure to artificial 
light at night. It utilized the best available estimates of light pollution 
across the continental US, and empirically documented a pattern 
whereby neighborhoods with higher proportions of Black, Hispanic and 
Asian residents and renter-occupants were exposed to greater ambient 
light at night across the urban-rural continuum. Our results generally 
align with findings from EJ analyses of other anthropogenic hazards. 
Continued research on the EJ implications of light pollution should seek 
to identify the processes responsible for the disparities we documented, 
as a complete understanding of both the drivers and repercussions of 
disparate exposures to ambient light at night will be needed to identify 
appropriate solutions. 

Given that neighborhoods composed of racial/ethnic minority and 
renter-occupant populations are disproportionately burdened by 
ambient light at night in the US—and that the impacts of light pollution 
will worsen in terms of luminosity and geographic extent (Kyba et al., 
2017)—policy actions are needed. Municipal governments should 
consider adopting the use of warm-colored LED bulbs, as they are less 
harmful to human health than cool-colored bulbs, but equally energy 
efficient (Falchi et al., 2016a). Additionally, motion sensors, timers, and 
directional filters can be installed to public lightning fixtures to ensure 
that light is emitted only when and where it is required by human ac-
tivity. Such practicable steps would have immediate impacts on the 
levels of ambient light present at night in communities and would likely 
help to mitigate disparities in exposure to light pollution. Efforts taken to 
reduce light pollution in communities should also seek to incorporate 
the voices of residents who prefer higher levels of light at night in 
particular spaces. While the reduction of light levels has the potential to 
improve the health and wellbeing of an entire community, artificial 
lighting in areas such as transportation corridors or residential zones 
may promote a sense of safety for some residents. In order to balance the 

Table 3 
Results of generalized estimating equations predicting ambient light pollution in metropolitan core, suburban, and small city–rural census tracts of the continental 
United States.  

Parameter Metropolitan Core n ¼ 50,200 Suburban n ¼ 7333 Small City–Rural n ¼ 12,825 

Beta Exp(B) 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Intercept 1.273 3.570 1.248, 1.297 <0.001 1.644 1.407, 1.882 <0.001 1.330 1.232, 1.428 <0.001 
Proportion Black 0.197 1.218 0.185, 0.210 <0.001 0.085 0.064, 0.106 <0.001 0.087 0.073, 0.101 <0.001 
Proportion Hispanic 0.130 1.139 0.107, 0.153 <0.001 0.045 0.022, 0.068 <0.001 0.007 � 0.005, 0.019 0.243 
Proportion Asian 0.128 1.136 0.113, 0.143 <0.001 0.198 0.123, 0.272 <0.001 0.081 0.035, 0.128 0.001 
Proportion AIAN � 0.034 0.966 � 0.070, 0.001 0.058 � 0.002 � 0.006, 0.001 0.195 � 0.004 � 0.007, � 0.001 0.006 
Proportion NHPI � 0.012 0.988 � 0.020, � 0.004 0.004 � 0.013 � 0.032, 0.006 0.180 � 0.005 � 0.013, 0.003 0.198 
Proportion Multi-/Other Race 0.001 1.001 � 0.009, 0.012 0.806 0.004 � 0.007, 0.014 0.491 0.008 0.002, 0.015 0.010 
Proportion Renter 0.158 1.171 0.140, 0.176 <0.001 0.084 0.049, 0.118 <0.001 0.167 0.150, 0.183 <0.001 
Median Household Income 0.106 1.112 0.063, 0.150 <0.001 0.239 0.174, 0.303 <0.001 0.100 0.026, 0.174 0.008 
Median Household Income Sq. 0.003 1.003 � 0.028, 0.034 0.854 � 0.103 � 0.171, � 0.035 0.003 � 0.052 � 0.171, 0.067 0.393 
Population Density 1.962 7.112 1.882, 2.042 <0.001 2.632 2.072, 3.192 <0.001 2.166 1.937, 2.396 <0.001 

Note: AIAN ¼ American Indian or Alaska Native; NHPI ¼ Native Hawaiian or Pacific Islander. All continuous predictors were standardized. Each model adjusts for 
clustering by county and age of housing stock. The metropolitan core model uses an unstructured correlation matrix, inverse Gaussian distribution, and logarithmic 
link function; a Exp(B) column including exponentiated parameter estimates is included to aid interpretation. The suburban model uses an unstructured correlation 
matrix, normal distribution, and identity link function. The rural model uses an exchangeable correlation matrix, normal distribution, and identity link function. Exp 
(B) columns are not provided for the suburban or rural models as logarithmic link functions are not utilized. Racial/ethnic minority group variables are interpretable in 
reference to the proportion of White residents. 
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needs of diverse neighborhoods, a range of perspectives must be 
included in the process of creating and employing solutions. 

On a broader scale, land use and housing policy processes in the US 
must be engaged in order to address the disparities we documented. 
Policies and practices of the past and present have played a role in 
concentrating light pollution and its accompanying health risks within 
neighborhoods comprised of relatively high proportions of racial/ethnic 
minorities and renter-occupant households. Future housing and land use 
policies in the US should seek to increase affordable housing options for 
socially disadvantaged populations within areas not impacted by acute 
light pollution. A wider range of affordable housing options would likely 
decrease the disparities in exposures to light pollution and other envi-
ronmental hazards observed across the US. Additionally, zoning regu-
lations limiting the amount of night light emitted by industrial or 
commercial activities, as well as restricting the construction of new 
residential developments in zones designated for light-intensive activ-
ities, may also help redress environmental injustices associated with 
light pollution. Federal agencies are mandated to pursue EJ in equitably 
protecting the health and wellbeing of all US communities (Clinton, 
1994). In order to achieve that mandate, disparities in exposure to 
ambient light pollution should be considered. It is our hope that this 
study contributes to the recognition of and efforts to address light 
pollution inequities across US communities. 
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