Improve RCV with Condorcet Minimax

Dr. Robert Close Retired Physics Professor (Clark College) Resident of Portland, Oregon

Compared with plurality voting, ranked-choice voting (RCV) can potentially result in the election of candidates more representative of voter preferences. However, the usual successive elimination procedure for determining the winning candidate is a poor method for processing ranked-choice ballots. I have prepared, in easy-to-read outline form, an explanation of the flaws of the successive elimination method, results of an actual election demonstrating these flaws, and a proposal for improving RCV by using the method best supported by academic research.

Typical Ranked-Choice Voting (RCV) Election:

> Voters rank candidates in order of preference.

- Ballots can be spoiled by tied or skipped rankings.
- Voters are unlikely to rank more than three or four candidates.
- Successive elimination (default for "RCV" or "instant runoff voting (IRV)"):
 - Starting with voters' 1st choices, candidates with the <u>fewest votes</u> are eliminated in rounds. This requires information from <u>all ballots</u> to be on hand before the vote tabulation process can begin. <u>Long delays</u> are common.
 - Ballots supporting eliminated candidates have the next choice counted as 1st in the next round <u>if and only if</u> that choice has not been eliminated. This requires all ballot preferences to be stored at the vote tabulation location.
 - <u>Lacks transparency</u>: hand audits and recounts are extremely cumbersome since ballots need to be accessed multiple times.
- When only two candidates remain, the winner is the one with the most votes in that round.
 - Ballots supporting the final eliminated candidate <u>do not</u> have the next choice counted. Thus, ballots are not all treated equally.
- > This method often yields unsatisfactory outcomes:
 - "Vote splitting" can eliminate a candidate who would have won if a "spoiler" candidate were eliminated sooner.
 - A majority of voters may prefer one of the losing candidates to the winning candidate.

Example: Alaska 2022 Special House Election

> Top vote recipients in the open primary were:

- Sarah Palin (R) 27.0%
- Nick Begich (R) 19.1%
- Al Gross (I) 12.6%
- Mary Peltola (D) 10.1%
- > Palin and Peltola would presumably have won closed party primaries.
- > Al Gross dropped out of the race.

General Election Ballot Ranking Distribution

% of Ballots \rightarrow	14.3%	8.2%	6.0%	18.1%	1.9%	11.3%	25.1%	2.5%	12.6%
1st choice \rightarrow	Begich	Begich	Begich	Palin	Palin	Palin	Peltola	Peltola	Peltola
2nd choice \rightarrow	Palin	Peltola	_	Begich	Peltola	Ι	Begich	Palin	1

Successive Elimination Rounds:

• Results were announced <u>15 days</u> after the August 16th election.

	Begich	Palin	Peltola	Total	Notes
Round 1	28.5%	31.3%	40.2%	100.0%	Begich eliminated
Round 2	N/A	45.6%	48.4%	94.0%	Peltola wins

- Begich is eliminated in Round 1. Voters who selected Begich first have their second choices counted.
- Palin is eliminated in Round 2. Voters who selected Palin first <u>do not</u> have their second choices counted.
- Peltola wins with a relative majority of votes versus Palin (not an absolute majority).

Final Result

- 42.1% of voters expressed a preference for Peltola over Begich. (1.9% + 25.1% + 2.5% + 12.6%)
- 46.6% of voters expressed a preference for Begich over Peltola. (14.3% + 8.2% + 6% + 18.1%)
- A relative majority of voters prefers a losing candidate (Begich) to the winner (Peltola). This is a poor election result.
- "Vote splitting" between Begich and Palin caused Begich to be prematurely eliminated. Palin is a "spoiler" candidate.
- The Republican National Committee adopted a <u>Resolution to Officially Oppose</u> <u>Ranked Choice Voting Across the Country</u>.

Improving RCV with Condorcet Minimax:

> Voters rank candidates in order of preference.

- Ballots <u>should not</u> be spoiled by tied or skipped rankings.
- Limit the number of general election candidates by advancing three to five candidates from an inclusive single-ballot primary election.

> For each pair of candidates, determine who is ranked higher on each ballot.

- Ignore tied rankings. Count unranked candidates as ranked worst.
- <u>Each precinct</u> keeps running totals as ballots are processed.
- Summarize all ballot information in a list of pairwise results or as a table of the number of voters preferring each candidate to each opponent.
- Ballot tabulation is <u>fast and transparent</u>.
- Determine the winning candidate using the Condorcet Minimax (or Simpson-Kramer) method:
 - If one candidate is preferred to each opponent by a relative majority of voters (as is true in nearly all elections), then that candidate is elected.
 - Otherwise, elect the candidate requiring the fewest additional 1st-choice rankings to attain relative majority preference over each opponent.
 - Compared with other election methods, Condorcet Minimax minimizes voter preference for the runner-up relative to the winner.
 - Alternative methods such as Approval or STAR voting incentivize voters to "bullet vote" for a single candidate, thereby reducing the influence of voters who indicate support for multiple candidates.

	<u>Opponents:</u>	<u>Begich</u>	<u>Palin</u>	<u>Peltola</u>
Candidates:	Begich		53.7%	46.6%
	Palin	33.7%		45.6%
	Peltola	42.1%	48.4%	

Election Result Table for AK 2022 Special House Election (% of Voters Preferring Candidate to Opponent)

Pairwise election results:

Begich 53.7% versus Palin 33.7% Begich 46.6% versus Peltola 42.1% Peltola 48.4% versus Palin 45.6%

Begich should be elected as the "Condorcet winner" preferred by voters to each of the other candidates.

Summary

> RCV with Successive Elimination:

- Voids ballots with tied rankings.
- Requires all ballot information to be accessible at a central tabulation center.
- Requires all ballots to be processed before beginning tabulation.
- Counts second choices for some ballots but not others, depending on when the first choice is eliminated.
- Hand audits and recounts are difficult.
- Subject to vote-splitting and "spoiler" candidates.
- A losing candidate is often preferred by voters to the winning candidate.

Condorcet Minimax:

- Allows ballots with tied rankings.
- Allows ballot data to be compiled at each precinct.
- Allows immediate tabulation of ballots as they are processed.
- Counts all rankings on all ballots. No voter preferences are lost.
- Easy to perform hand audits or recounts.
- Pairwise comparisons not affected by other candidate rankings.
- Guarantees election of any candidate who is preferred by voters to each opponent (i.e. any candidate who would defeat each opponent head-to-head).
- Minimizes the likelihood of voters preferring a losing candidate to the winning candidate.
- Supported by rigorous academic research.

Notes:

Academics at Princeton University explain the advantages of Condorcet methods: <u>https://www.princeton.edu/~cuff/voting/theory.html</u>,

https://www.princeton.edu/~cuff/publications/wang allerton 2012.pdf

Richard Darlington of Cornell University has performed simulations demonstrating the superiority of Condorcet Minimax methods over other election methods: https://arxiv.org/abs/1606.04371, https://arxiv.org/pdf/1807.01366,

https://doi.org/10.1007/s10602-022-09390-w

(Other academic research supporting Condorcet Minimax is cited in these papers.) Andrew Meyers of Cornell University developed the <u>Condorcet Internet Voting Service</u>, for which a version of Minimax is the default method for reasons explained here: <u>https://civs1.civs.us/rp.html</u>