

US carbon emissions, forest product demand

Global roundwood production

Betts et al 2021

US Carbon emissions: Forest sector a carbon sink

US EPA 430-R-21-001: Inventory of US greenhouse gas emissions and sinks (1990 – 2019)

Nearly 30 million acres of forested land in Oregon

- 10 million acres of private forest lands
- 30 million acres of state and federal
- Harvest about 3-4 bbf per year
- ~40% biomass remains as harvest residues
- We burn ~ 1.2 million tons of residues= 2.2 million tons CO₂e lost to the atmosphere (assuming 50% C)
- What if that biomass were energy?

Pyrolysis is proven technology

- Conversion of biomass into bio-oil, hydrogen, and biochar
- Biochar is a valuable soil amendment
- Increases soil carbon storage and improves soil physical properties

Lehmann 2007. Frontiers in Ecol. Env.

Mobile kilns

Distributed production

Past projects with centralized pyrolysis have failed

Biomass is bulky and expensive to transport

Mobile ComKilns: Transport energy dense biocrude = new opportunity to get it right

Catalyst: ComKiln as an Anchor Tenant

Summary

- Oregon forestry produces with native species, environmentally sound, but can do better
- 2. Forest residues as a resource
- 3. Displacing fossil fuels with biomass = direct impact on C cycle
- 4. Mobile pyrolysis kilns provide opportunity, but requires research prior to investment

