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Alzheimer’s disease and related forms of dementia degrade human capital, in-

crease medical spending, and reduce the quantity and quality of life. Dementia is 

the fifth leading cause of death worldwide.1 In the US alone, 5 million dementia 

patients spent $277 billion on health care services in 2018, with an additional 18 

billion labor hours by unpaid caregivers (Alzheimer’s Association 2018). The pre-

cise causes of dementia remain unknown. However, recent medical research raises 

suspicion that long-term exposure to fine-particulate air pollution smaller than 2.5 

microns in diameter (PM2.5) may contribute to dementia (Block et al. 2012, Under-

wood 2017). Observational studies reinforce this suspicion. For example, Zhang et 

al. (2018) and Carey et al. (2018) found that long-term exposure to PM2.5 is associ-

ated with decreased cognitive performance for adults in China and increased rates 

of dementia for adults in London, respectively. However, these associations may 

not be causal. Economic research on residential sorting has shown that air pollution 

triggers some people to move (Banzhaf and Walsh 2008, Cheng, Oliva, and Zhang 

2017) and, conditional on moving, people sort themselves across neighborhoods 

based on their incomes and preferences for air quality and other spatially correlated 

public goods (Sieg et al. 2004, Bayer, Ferreira and McMillan 2007, Bayer, Keohane 

and Timmins 2009, Kahn and Walsh 2015, Bayer et al. 2016). This Tiebout sorting 

could generate correlation between PM2.5 and dementia as an equilibrium outcome 

if people who are at a greater risk of developing dementia sort themselves into rel-

atively polluted areas.   

This paper is the first nationwide, individual-level study of whether long-term 

exposure to PM2.5 has a causal effect on dementia. We use administrative records 

                                                 
1 The World Health Organization’s 10th revision of the International Statistical Classification of Diseases and Related Health 
Problems defines dementia (codes F00-F03) as “a syndrome due to disease of the brain, usually of a chronic or progressive 
nature, in which there is disturbance of multiple higher cortical functions, including memory, thinking, orientation, compre-
hension, calculation, learning capacity, language and judgement. Consciousness is not clouded. The impairments of cognitive 
function are commonly accompanied, and occasionally preceded, by deterioration in emotional control, social behavior, or 
motivation. This syndrome occurs in Alzheimer disease, in cerebrovascular disease, and in other conditions primarily or 
secondarily affecting the brain.” (WHO 2011) Below we define Alzheimer’s disease specifically, which accounts for 60% 
to 80% of all dementia cases. Mortality data are from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-
of-death. 
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from the U.S. Medicare program to develop a longitudinal research design that 

comprehensively addresses residential sorting. First, we assemble ten years of data 

on a random sample of millions of Americans over the age of 65 to track their 

diagnosis dates for many illnesses including Alzheimer’s disease and related de-

mentias, their use of prescription drugs for symptoms of Alzheimer’s disease, their 

demographics, and their sequence of residential addresses from 2004 through 2013. 

Then we combine individuals’ location histories with PM2.5 data from the Environ-

mental Protection Agency (EPA) to measure long-term PM2.5 exposure at the indi-

vidual level, accounting for migration.  

Like the prior observational studies, we observe strong, positive relationships 

between the prevalence of dementia and the average concentration of PM2.5 over a 

decade. Figure A1 illustrates this association by plotting state-level dementia rates 

among 75, 80, 85 and 90-year-old individuals in 2013 against their average resi-

dential PM2.5 exposures from 2004 through 2013. Correlation coefficients range 

from 0.47 to 0.66.  

We investigate whether these associations are causal or are spurious correla-

tions caused by residential sorting, sample selection, errors in measuring pollution 

exposure, or other sources of omitted variable bias. Our research design leverages 

quasi-random variation in PM2.5 resulting from the EPA’s expansion of Clean Air 

Act regulations. In 2004 the EPA began to enforce a maximum threshold on PM2.5, 

prompting local regulators to clean up polluted areas. The subsequent reductions in 

emissions created variation in individuals’ PM2.5 exposures from 2004-2013 con-

ditional on their demographics, pre-regulatory health, and pre-regulatory pollution 

exposures and other geographic factors. We use this variation to identify how PM2.5 

exposure from 2004-2013 affected the probability of being diagnosed with demen-

tia during this period among those who did not have dementia in 2004. Our longi-

tudinal two-stage-least-squares (2SLS) models flexibly control for individual char-



3 
 

acteristics associated with dementia risk, including race, gender-by-integer-age in-

teractions, medical expenditures, fully-interacted sets of baseline medical condi-

tions, the socioeconomic composition of people’s baseline neighborhoods, and the 

pre-regulatory pollution levels of those neighborhoods. Further, we include core-

based statistical area fixed effects to absorb spatial variation in diagnostic stand-

ards, health care quality and access, and latent environmental quality. Conditional 

on these characteristics, our models are identified by three sources of residual var-

iation in PM2.5 that prior studies have used to analyze air pollution’s effects on 

housing prices and residential sorting. First, like Chay and Greenstone (2005), we 

use information on how strengthened EPA regulations affected some counties more 

than others. Second, like Bento, Freeman and Lang (2015), we use within-county 

variation in the effects of these regulations. Third, like Banzhaf and Walsh (2008), 

we observe changes in exposure among people who moved after the regulations 

were enforced. 

We find that a 1 μg/m3 increase in average residential concentrations of PM2.5 

over a decade (9.1% of the mean) increases the probability of receiving a dementia 

diagnosis by 1.68 percentage points (pp) (7.5% of the mean) among those who sur-

vived the decade. To put this estimate in context, the elevated risk of dementia due 

to a 1 μg/m3 increase in decadal PM2.5 is approximately twice as large as the ele-

vated risk conditionally associated with having been previously diagnosed with hy-

pertension and half of the elevated risk conditionally associated with having been 

previously diagnosed with diabetes.   

Because our main estimation sample is limited to people who survived to 2013, 

our finding could diverge from the population-wide effect if unobserved health af-

fecting survival is correlated with unobserved health affecting dementia. To adjust 

for this classic selection bias, we extend our 2SLS model to incorporate a control-

function procedure (Heckman and Robb 1986) where we first estimate the proba-

bility of survival using additional instruments constructed from data on individuals’ 
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diagnoses of cancers that, based on medical literature, are unrelated to dementia. 

This procedure increases the estimated effect of a 1 μg/m3 increase in decadal PM2.5 

on the dementia diagnosis probability to 2.33 pp. The increase is consistent with 

the hypothesis that people with lower latent health are both less likely to survive 

the decade and more likely to develop dementia if they were to survive. 

Our selection-corrected 2SLS estimate could still diverge from the population 

average treatment effect due to sample selection and/or residential sorting based on 

heterogeneous sensitivity to PM2.5 in terms of developing dementia. In other words, 

people who have a higher dementia sensitivity to PM2.5 might be more or less likely 

to survive the decade or more or less likely to live near pollution hot spots. We 

allow for these types of scenarios by adapting Garen’s (1984) correlated random 

coefficient model to simultaneously address selection and sorting on latent hetero-

geneity in sensitivity to PM2.5 within the selection-corrected 2SLS model. How-

ever, we find that this has almost no effect on our estimates, and we cannot reject 

the hypothesis of no sorting or selection on PM2.5 sensitivity.  

We implement four sets of additional tests to investigate the validity and ro-

bustness of our research design and the mechanisms underlying our findings. First, 

we estimate the same 2SLS model for other chronic illnesses thought a priori to be 

unrelated to PM2.5 but that share similarities with dementia in terms of symptoms, 

diagnostic difficulty, and how diagnosis rates are correlated with age, race and gen-

der. These placebo tests yield point estimates that are small and statistically indis-

tinguishable from zero at conventional levels, supporting our research design. Sim-

ilarly, we repeat the estimation using dementia at baseline as the outcome. Our es-

timate is small and relatively precise, but statistically indistinguishable from zero, 

suggesting that our model is unlikely to be confounded by anticipatory Tiebout 

sorting into more or less polluted areas based on unobserved factors that contribute 

to dementia. Second, we show that our results are not explained by vascular demen-

tia that may arise due to short-term pollution spikes leading to strokes, but rather 
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by Alzheimer’s disease specifically. Third, we test whether our findings can be ex-

plained by shorter durations of exposure. The estimated effects of PM2.5 increase in 

exposure duration and become statistically significant beyond eight years, support-

ing the medical literature’s hypothesis that long-term exposure drives PM2.5’s effect 

on dementia. Fourth, our results persist when we modify our main specification to 

use different instruments, different measures of dementia such as the use of pre-

scription drugs for the symptoms of Alzheimer’s disease, different samples that 

either include or exclude people who select into managed care plans known as Med-

icare Advantage, and different approaches to measuring PM2.5 exposure including 

adjusting for the possibility that dementia’s onset changes sorting behavior. 

Our results suggest that the negative effects of air pollution on health and hu-

man capital and the monetary benefits of regulation are substantially larger than 

previously realized due to its effects on dementia. Incorporating these effects will 

be important for comprehensively evaluating ongoing efforts to improve air quality 

worldwide. These include recent efforts to reduce vehicle emissions in China (Li 

2017) and industrial emissions in the U.S. (Blundell, Gowrisankaran, and Langer 

2018) via the Clean Air Act regulations that we consider in this paper. We find that 

the EPA’s expansion of the Clean Air Act to target PM2.5 specifically led to im-

provements in newly regulated areas that averted approximately 182,000 people 

with dementia in 2013, yielding $214 billion in benefits. Finally, we find that 

PM2.5’s effect on dementia persists at levels below the EPA’s current regulatory 

threshold, implying that further regulation would yield additional benefits.  

I. Related Literature 

A. Economic research on air pollution, human capital, and Tiebout sorting 

Economic research has shown that particulate matter emitted by the transporta-

tion, manufacturing, and energy sectors increases mortality. This finding persists 
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around the world and over time, even as pollution has declined and medical tech-

nology has improved—from the historically high exposures in London in the 1960s 

(McMillan and Murphy 2017) and China in the 2000s (Li et al. 2019) to the histor-

ically low exposures in the U.S. in the 2000s (Deryugina et al. 2019). Economic 

research has also shown that air pollution constrains both the production and 

productivity of human capital.2 For instance, daily pollution spikes have been found 

to increase school absences and reduce students’ scores on high stakes exams (Cur-

rie et al. 2009, Ebenstein, Lavy, and Roth 2016). Among working age adults, daily 

pollution spikes have been found to reduce productivity in both manual and cogni-

tive tasks (Chang et al. 2016, Archsmith, Heyes, and Saberian 2017). In contrast, 

prior studies have not considered whether pollution degrades human capital late in 

life apart from mortality. While prior studies have shown that cognitive decline 

impairs older adults’ financial decisions, reduces their welfare, and affects market 

functioning (Agarwal et al. 2009, Keane and Thorpe 2016) our study is the first 

economic research to investigate whether air pollution plays a role. 

Residential sorting poses a difficult econometric challenge for any study of 

long-term pollution exposure (Kahn and Walsh 2015). The Tiebout sorting litera-

ture has shown that heterogeneity in wealth and preferences plays a leading role in 

determining whether people choose to pay housing price premia to live in neigh-

borhoods with better air quality and correlated amenities (e.g., Bayer, Ferreira and 

McMillan 2007, Banzhaf and Walsh 2008, Bayer, Keohane and Timmins 2009, 

Bayer et al. 2016, Lee and Lin 2018). This creates a potentially complex endoge-

neity problem because factors determining individual pollution exposure (e.g. 

wealth and preferences) may themselves be partially determined by latent aspects 

of health that affect dementia risk. In addition to developing novel data and methods 

to overcome this problem, we contribute to the sorting literature by providing the 

                                                 
2 See Graff-Zivin and Neidell (2013) for a systematic literature review.  
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first empirical analysis of long-term pollution exposure to account for migration. 

B. Medical links between air pollution and dementia 

Medical and epidemiological research provides reason to suspect that long-term 

exposure to PM2.5 may permanently impair older adults’ cognition via dementia. 

Compared with other air pollutants, PM2.5’s relatively small size allows it to remain 

airborne for long periods, to penetrate buildings, and to be inhaled easily. The lit-

erature has proposed multiple pathways by which PM2.5 may cause dementia. First, 

PM2.5 accumulates in brain tissue (Maher et al. 2016) and causes neuroinflamma-

tion, which is associated with symptoms of dementia (Underwood 2017). People 

living in polluted areas for long periods have been found to have elevated concen-

trations of PM2.5 in their brains, smaller brain volume, and higher rates of brain 

infarcts or areas of necrosis (Wilker et al. 2015). Second, pollution is linked to in-

creased risk for strokes and subsequent vascular dementia (Wellenius et al. 2012). 

Third, exposure of mice to particulates in laboratory experiments results in neu-

roinflammation and patterns of brain cell damage similar to postmortem analysis 

of Alzheimer’s patients (Block et al. 2012). Fourth, PM2.5 has been associated with 

subclinical measures of cognitive impairment (Power et al 2016) such as laboratory 

tests, with the strongest associations among people over age 65 (Zhang et al. 2018). 

Finally, PM2.5 has been found to increase mortality from cardiovascular conditions 

(Pope et al. 2002, Landen et al. 2006) that are associated with a higher risk of de-

mentia (Alzheimer’s Association 2018).  

While suggestive, the current evidence directly linking PM2.5 to dementia is 

based on non-human mammal studies and specialized human cohorts, such as peo-

ple who chose to live near major roadways (e.g., Chen et al. 2017). An exception 

is Carey et al. (2018) which tracked 130,000 older adults in London over a nine-

year period and found their likelihood of a dementia diagnosis to be positively cor-

related with their neighborhood’s baseline pollution. However, this study did not 
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address potential confounding from residential sorting.  

II. Variation in Long-Term PM2.5 Exposure Due to the Clean Air Act 

We analyze how decadal exposure to air pollution affects the probability of new 

dementia diagnoses using within-county and between-county, quasi-random varia-

tion in pollution exposure resulting from Clean Air Act (CAA) regulations. The 

CAA established national standards for maximum-allowable concentrations of air 

pollutants. Counties containing monitors that violate the standards are designated 

as being “nonattainment” by the EPA. States are then responsible for developing 

implementation plans that coordinate local regulatory actions to ensure that nonat-

tainment counties reduce concentrations around pollution “hot spots” enough to 

meet the standards. States that fail to bring their counties into attainment risk losing 

federal highway funds and may face additional penalties. 

Among the regulated pollutants, particulate matter is believed to have the most 

pernicious effects on human health (US EPA 2011). Beginning in 1971, the EPA 

regulated total suspended particulates (TSP). In light of evidence that health effects 

were driven by the smallest particulates, the EPA replaced the TSP standard with a 

standard on PM10 in 1987 and a standard on PM2.5 in 1997. Each new standard was 

followed by new nonattainment designations.3 These designations caused the reg-

ulated counties to have relatively large reductions in particulates. Further, the sizes 

of these reductions varied within counties due to local targeting of hot spots and 

geographic factors that determine particulate dispersion. Because a county’s non-

attainment status was determined by its “dirtiest” monitor, local regulators took 

actions that led to the largest pollution reductions around monitors that exceeded 

the standard or were close to doing so (Aufhammer, Bento, and Lowe 2009).  

Prior research has leveraged similar policy changes to evaluate air pollution’s 

                                                 
3 See Kahn (1997) for a review of these policies. 
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effects by assuming that people’s decisions about where to live prior to these poli-

cies did not incorporate anticipation of these regulatory changes and their neigh-

borhood-specific effects on air pollution. Chay and Greenstone (2005) and Isen, 

Rossin-Slater, and Walker (2017) use county nonattainment for TSP as an instru-

ment for subsequent changes in county-level TSP concentrations, while Bento, 

Freedman, and Lang (2015) develop instruments based on within-county variation 

in monitor-level nonattainment for PM10. In this paper, we exploit the EPA’s initial 

nonattainment designations for PM2.5. 

In 1997, the EPA established initial monitoring protocols for PM2.5 and set the 

maximum-allowable annual average concentration at 15.05 μg/m3. By 1999, a na-

tional network of more than 900 air quality monitors was put into place. Several 

litigants challenged the new PM2.5 standard, but it was ultimately upheld by the U.S. 

Supreme Court and litigation ended in 2002. In April 2003, the EPA asked state 

and local regulators to provide their three most recent calendar years of PM2.5 mon-

itor data and to self-report any nonattainment areas to the EPA by February 2004. 

The same memo explained how the EPA would use this information to finalize 

nonattainment designations and outlined procedures and deadlines for becoming 

compliant. In January 2005, the EPA issued final nonattainment designations using 

monitor data from 2001-2003.4  

Figure I shows the locations of attainment and nonattainment counties with air 

quality monitors. At that time, 132 of the monitored counties containing approxi-

mately 27% of the US population were classified as nonattainment. Another 528 

counties containing 43% of the US population were classified as attainment. The 

remaining counties lacked monitoring data and were designated “unclassifiable” 

and not subjected to additional regulation (US EPA 2005). States were directed to 

                                                 
4 Nonattainment designations at each monitor were based on an average from 2001-2003 of annual averages over quarterly 
averages over daily averages over hourly average monitor readings. For counties with multiple monitors, nonattainment 
designations were based on the monitor with the highest concentration. Details are provided in US EPA (2005). 
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ensure that nonattainment counties met the 15.05 μg/m3 standard by 2010.

FIGURE I: INITIAL COUNTY (NON)ATTAINMENT DESIGNATIONS FOR PM2.5 

 
Note: The map shows attainment status in 2005 for US counties that had air quality monitors in place throughout the 2001-
2003 evaluation period. There were 132 nonattainment counties located in 21 states and 528 attainment counties in 50 states.  

 Local regulators’ responses to these designations led to quasi-random within- 

and between-county variation in the change in average PM2.5 concentrations over 

the subsequent decade. Figure II provides initial evidence that nonattainment des-

ignations led to greater average PM2.5 reductions in newly regulated counties.5 We 

define 2004 as the start of the post-regulatory period because local regulators 

learned which counties were likely to be designated nonattainment at some point 

between April 2003 (when they received the EPA memo) and February 2004 (when 

they were required to submit their data). The figure shows that PM2.5 concentrations 

were trending downward similarly in both attainment and nonattainment counties 

prior to 2004. The dotted line shows that the difference between the two trend lines 

was fairly stable from 1999 through 2003 with between 4.4 and 4.8 higher μg/m3 

                                                 
5 The figure is based on a balanced panel of 485 PM2.5 monitors in operation continuously from 2001-2013. Appendix Figure 
A2 shows that the figure looks virtually identical if we reconstruct it using an unbalanced panel of all monitors ever in 
operation from 2001-2013. 
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in nonattainment counties. After 2003, PM2.5 concentrations declined at a noticea-

bly faster rate in nonattainment counties so that by 2013 the gap was only 1.9 μg/m3. 

This differential is 1.5 μg/m3 smaller than the gap that would be predicted by pro-

jecting the pre-regulatory trend from 1999-2003 forward to 2013 (3.4 μg/m3). The 

cumulative difference between the dotted and solid lines reveals that the average 

concentrations from 2004 to 2013 in nonattainment counties was 0.97 μg/m3 lower 

than projected from the pre-regulatory trend. 

FIGURE II: ANNUAL PM2.5 CONCENTRATIONS BY COUNTY ATTAINMENT STATUS 

 
Note: The figure reports annual average concentrations of PM2.5. Measurements are taken from air quality monitors in coun-
ties designated in 2005 as attainment or nonattainment with the federal standard based on monitor readings from 2001-2003. 
The nonattainment line is a simple average over monitors in nonattainment counties that were in operation from 2001-2013. 
The attainment county line is defined similarly. The dotted line shows the difference between the nonattainment and attain-
ment lines. The pre-regulatory trend line is a projection of the difference from 1999 to 2003 when state and local regulators 
were notified of the impending nonattainment designations. In 2010 the Census Bureau recorded 41% of the US population 
age 65 and over living in attainment counties and 27% living in nonattainment counties. 

Figure II mirrors the analysis that Chay and Greenstone (2005) used to motivate 
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their use of the 1975 nonattainment designations for TSP (see Figure 2 in that pa-

per) as instrumental variables to isolate exogenous between-county variation in 

TSP changes. We extend their strategy to additionally isolate exogenous within-

county variation in PM2.5 changes. Specifically, we follow Auffhammer, Bento and 

Lowe (2009) in allowing the effects of local regulatory responses to vary with dis-

tance from the regulatory threshold. We control for pre-regulatory trends with a 

flexible function of local PM2.5 levels from 2001-2003 and find that, conditional on 

pre-regulatory levels of PM2.5, neighborhoods in nonattainment counties had PM2.5 

reductions over the following decade larger than neighborhoods in attainment coun-

ties, with the size of the difference varying with the distance from the threshold. 

We further exploit exogenous within-county variation in PM2.5 by developing an 

IV approach in the spirit of Bento, Friedman, and Lang (2005), where we interact 

county-attainment status with the nearest monitor’s attainment status to account 

explicitly for differential targeting within a county. Section IV-VI formalize these 

models and report results. 

III.   Data and Summary Statistics 

A. Medicare Data 

The U.S. Medicare program provides universal health insurance for citizens 

over age 65. The traditional form of Medicare (TM) pays health care providers a 

predetermined fee for each service they provide, such as an operation, a test, or a 

visit to the doctor.6 Alternatively, beneficiaries can choose to enroll in a Medicare 

Advantage (MA) managed care plan that charges a monthly premium in exchange 

for limiting annual out-of-pocket expenditures and, often, for providing additional 

forms of coverage such as dental and vision.7 We analyze Medicare administrative 

                                                 
6 Traditional Medicare is comprised of universal inpatient coverage for hospitals, skilled nursing facilities, and hospice fa-
cilities (known as Part A) and coverage for physician services and outpatient treatments (known as Part B). Enrolling in Part 
B requires paying an additional monthly premium. Over 90% of people over age 65 choose to enroll in Part B.  
7 MA enrollees are left out of most studies of Medicare beneficiaries due to data limitations during our study period, but we 
are able to overcome these limitations and include MA enrollees in some specifications, described below. 
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records from the US Centers for Medicare and Medicaid Services (CMS). CMS 

maintains a comprehensive national database on beneficiaries, including their ad-

dresses, medical claims, and demographics. We start with a random 10% sample of 

all beneficiaries in 1999 and then add random 10% samples of all new beneficiaries 

each year from 2000 to 2013.8  

After compiling these data, we extract records for the subset of people for whom 

we can observe health, residential location, and PM2.5 exposure at the point when 

PM2.5 regulation effectively began in 2004. We start with everyone who was 65 or 

older on January 1, 2004 (6.6 million people). Then we make four sample cuts. 

First, we drop 2.7 million people who lived in “unclassifiable” counties that lacked 

PM2.5 monitors at the time regulation began. This data cut is standard in air pollu-

tion studies due to the increased scope for measurement error.9 Next, we restrict the 

sample to people enrolled in traditional Medicare (TM) in 2004 by dropping 0.8 

million who enrolled in Medicare Advantage (MA) that year. This is because CMS 

lacks data on dementia diagnoses of MA enrollees in 2004, and our models require 

the opportunity to observe within-person changes in dementia. Thus, our third ex-

clusion is to drop 0.3 million people who had dementia in 2004 because the disease 

is currently irreversible, leaving no scope for change.10 Finally, we drop 0.4 million 

people whose CMS records are missing claims in 2004 or who we could not assign 

to a Census block group in 2004 based on their mailing address on file or due to the 

fact that they moved during that year. These sample cuts are unlikely to compro-

                                                 
8 Some people become eligible prior to age 65, for example due to disability, but we exclude them from the data until they 
turn 65. Due to the provenance of our data, we also include an independent, random 20% sample from the universe of age 
65 and over beneficiaries who purchased standalone prescription drug insurance plans through Medicare Part D at any point 
between 2006 and 2010 without the aid of low-income subsidies.  
9 Spatially interpolating their pollution exposures relies exclusively on information from other counties, which may increase 
measurement error due to the greater distance between people’s residences and the monitors. This could pose a threat even 
to 2SLS estimation if the measurement error tends to be greater in the unmonitored/unclassifiable counties because they were 
treated the same as attainment counties for regulatory purposes. We avoid this threat to identification by dropping people 
who lived in unmonitored/unclassifiable counties at the time nonattainment designations were made. 
10 As described below, we perform a model validation test using a sample that includes those with dementia in 2004.  
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mise external validity. Appendix Table A1 shows that the excluded groups are sim-

ilar to our main estimation sample in terms of average demographics, longevity, 

and, when observable, medical conditions, health expenditures, pollution exposure, 

and Census block-group demographics. 

FIGURE III: SAMPLE SIZES AND TRANSITIONS FROM 2004-2013 

 
Note: The solid arrows denote our primary sample. The dashed arrows indicate samples we use in sensitivity analyses that 
evaluate any effect on our estimates from selection on survival or selection on type of Medicare plan. The dotted arrow 
denotes a small subsample that we exclude because they moved to a location outside the United States, or to another location 
that we were unable to geocode, leaving us unable to reliably estimate their pollution exposure. 

The resulting sample consists of 2,439,950 people in 2004. Figure III illustrates 

how between 2004 and 2013, some of these people move outside of the continental 

US, move out of TM into MA and perhaps back again, or die. Our primary estima-

tion sample is comprised of 1,257,232 people who are alive and enrolled in tradi-

tional Medicare in 2013 (1,177,515 people who continuously enrolled in TM from 

2004 to 2013 plus 79,717 who moved from TM to MA and then back to TM). We 

explicitly account for potential selection bias caused by focusing on this balanced 

panel of TM survivors by additionally estimating models with extended samples 
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that include those who die before 2013 and those who move and remain in Medicare 

Advantage through 2013, as denoted by the dashed arrows in Figure III. Thus, we 

ultimately estimate models using 98% of the people we first observe in 2004. We 

drop 2% for whom we cannot reliably assign pollution exposure because they move 

outside the US or to an address that we are unable to geocode.  

B. Dementia and its risk factors 

For people in traditional Medicare, CMS’s Chronic Conditions Data Warehouse 

file uses codes on insurance claims to track if and when each person is diagnosed 

with a range of specific chronic medical conditions. A diagnosis of dementia as 

officially defined by the World Health Organization (see footnote 1) is based on the 

presence of multiple symptoms of cognitive impairment that significantly impact 

daily functioning.11 Examples include memory loss, impaired judgement, loss of 

spatial awareness, depression, and behavioral changes. Alzheimer’s disease is the 

primary type of dementia, accounting for 60% to 80% of all cases (Alzheimer’s 

Association 2018).12 Figure IV shows how the fraction of people with dementia 

varies by age and gender in 2013. Approximately 2% of our sample receives a di-

agnosis by age 66. Diagnosis rates increase gradually with age through the mid-

seventies before accelerating in the late seventies and beyond. More than one third 

of those living to age 90 receive a dementia diagnosis by that point. The diagnosis 

rate is higher for women and this gender gap widens with age. 

In addition to the diagnoses recorded in the Chronic Conditions Data Ware-

house file, we observe if and when each person began taking one of the five drugs 

                                                 
11 This claims-based approach to identifying dementia cases has been well validated (Taylor Jr., Fillenbaum, and Ezell 2002). 
12 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset 
of dementia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias 
and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe 
cortical atrophy and the triad of senile plaques; neurofibrillary tangles; and neuropil threads” (World Health Organization 
2011). 
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used to treat the symptoms of Alzheimer’s disease: donepezil, galantimine, rivastig-

mine, memantine, and donepezil and memantine in combination. We develop this 

measure from prescription drug claims data that cover many beneficiaries. Begin-

ning in 2006, Medicare beneficiaries could purchase prescription drug coverage 

through Medicare, either from standalone prescription drug plans or as part of their 

coverage from a Medicare Advantage plan. In our sample, 1,098,256 individuals 

meeting our other criteria also had drug coverage through Medicare, and 12% of 

them initiated one of these medications between 2006 and 2013. Among TM enrol-

lees for whom we can observe both drug use and dementia diagnoses, we see that 

90% of those prescribed these drugs also received a dementia diagnoses by 2013.   

FIGURE IV: DEMENTIA BY AGE AND GENDER IN 2013 

 

CMS data also provide controls for the known medical risk factors for demen-

tia. These include chronic conditions that reduce the flow of blood and oxygen to 

the brain (Alzheimer’s Association 2018). Most people in our data were diagnosed 

with at least one of these risk factors by 2004: stroke (7%), congestive heart failure 
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(13%), diabetes (22%), ischemic heart disease (36%), and hypertension (67%). Ad-

ditional behavioral factors associated with lower risk of dementia include higher 

educational attainment, better nutrition and overall physical health, and a higher 

degree of social and cognitive engagement. We proxy for these individual-level 

behaviors by using the average characteristics of people living in each individual’s 

2004 Census block group.13 From the US Census Summary files, we use block-

group averages of household income, per capita income, housing value, gross rent, 

housing stock age, percent of the housing stock that is owner occupied, share of 

residents over 65, share of residents by race, and share of residents by educational 

attainment.  

C. Using Address Histories to Measure Long-Term Pollution Exposure 

CMS uses information from the US Social Security Administration to track 

Medicare beneficiaries’ residential addresses. We obtain ZIP+4 Codes for each in-

dividual’s sequence of addresses from 2004 to 2013. ZIP+4 Codes are close to 

street addresses in terms of spatial precision: each code corresponds to a single mail 

delivery point such as a house, one floor of an apartment building, or one side of a 

street on a city block. The US includes more than 34 million ZIP+4 Codes, or about 

one for every four households.  

Migration patterns in our sample are similar to those reported by the Census 

Bureau for individuals aged 65 and above. Over two thirds of people live in the 

same ZIP+4 throughout our study period. Of the 31% of people who move at least 

once, 17% move between counties and 10% move between states. We use this in-

formation to measure each person’s long-term exposure to air pollution, incorpo-

rating changes in pollution experienced as a result of moving.14  

                                                 
13 A block group contains 600 to 3,000 residents on average (US Census). 
14 We are unable to observe seasonal migration by people with more than one residence (e.g., snowbirds) because we only 
observe the residential address on record with the Social Security Administration and CMS. Fortunately, the scope for meas-
urement error is small. Jeffery (2015) estimates that seasonal migrators only account for 2% to 4.1% of the Medicare popu-
lation based on addresses on Medicare claims for individuals’ primary care and emergency room visits.  
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Individuals in our estimation samples live in 2.7 million distinct ZIP+4 Codes 

between 2004 and 2013. We measure annual PM2.5 concentrations at the centroids 

of each of these areas using data from the EPA’s air quality system, consisting of 

1,722 monitors over the period 2001 to 2013. To approximate annual average con-

centrations in each ZIP+4 Code, we use the latitude and longitude coordinates of 

each monitor along with the coordinates of each ZIP+4.15 Specifically, we calculate 

the shortest distance between each ZIP+4 centroid and each monitor. Then, for each 

centroid-year combination, we calculate a weighted average of ambient concentra-

tions recorded at all monitors with the weights given by the square of the inverse 

distance.16 Thus, as the distance from a ZIP+4 centroid to a monitor increases, the 

weight assigned to that monitor decreases. We combine the resulting set of ZIP+4-

specific local PM2.5 readings with individuals’ residential ZIP+4 histories to con-

struct individual-specific exposure histories. Finally, we repeat this process to 

measure PM2.5 from 2001 to 2003 at the locations where people lived in 2004. By 

using these data to control for pre-regulatory PM2.5 levels, we can identify PM2.5’s 

effect on dementia from variation in post-regulatory exposures among people who 

lived in similarly-polluted neighborhoods at the time regulation began, but differed 

in whether their neighborhoods were in or out of attainment.   

These exposure histories are the most comprehensive data ever developed to 

study how air pollution affects older adults’ cognition. Like all existing methods 

for measuring pollution exposure, the constructed histories may embed measure-

ment error because of our inability to fully observe and control for factors such as 

avoidance behavior, the location and duration of activities taking place outside of 

the home, variation in indoor air penetration rates due to heterogeneity in home 

                                                 
15 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s 
TIGER/line Shapefiles and US Postal Service records. 
16 This method of interpolation, with weights given by the distance raised to a negative exponent, is a predominant method 
in the environmental economics literature.  
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sealing, and variation in respiration due to health and physical activity. Our instru-

mental variables approach also helps to address these sources of measurement error. 

FIGURE V: AVERAGE RESIDENTIAL CONCENTRATION OF PM2.5 BY YEAR  

 
Note: The figure reports the annual average concentrations of fine particulate matter based on place of residence for our 
sample of Medicare beneficiaries. 

Exposure to air pollution among the US Medicare population declined substan-

tially during the 2000s. Figure V shows that annual average residential exposure to 

PM2.5 declined from over 13 μg/m3 in 2001 to about 9 μg/m3 in 2013. This is true 

regardless of whether we measure exposure using an unbalanced panel of all mon-

itors in operation each year (solid line) or a balanced panel of 485 monitors that 

monitored PM2.5 continuously from 2001 through 2013 (dashed line). We use this 

balanced panel in our main econometric analysis to avoid measurement error that 

could be introduced if new monitors tend to be located in cleaner or dirtier areas 

(Muller and Rudd 2017, Grainger, Schreiber and Chang 2018) although we also 

show that our results are robust to instead using the unbalanced monitor panel. 
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IV.   Main Econometric Model and Results 

A. Identification of the longitudinal 2SLS model 

Let 𝑦𝑖,𝑡 indicate whether person i has dementia in year t. As described above, 

we restrict our primary sample to people who had not received a dementia diagnosis 

before the end of 2004 and who were still alive in 2013. We define an indicator, 

∆𝑦𝑖 = 𝑦𝑖,2013 − 𝑦𝑖,2004, for whether person i is newly diagnosed with dementia by 

the end of 2013. This measure of change in individual cognition is the dependent 

variable in our linear probability model, 

(1)  ∆𝑦𝑖 = α ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜂𝑖 + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝜖𝑖.  

The coefficient of interest in equation (1), α, measures the effect of the average 

concentration of PM2.5 at the person’s residence over the decade (from 2004 to 

2013) on ∆𝑦𝑖. 

We control for individual and neighborhood characteristics that may be corre-

lated with both dementia and PM2.5. First, we add dummy variables, 𝜂𝑖, for the 

approximately one thousand core-based statistical areas (CBSAs) in which people 

live in 2013 to absorb the effects of environmental factors that could be spatially 

correlated with both pollution and dementia.17 Examples include extreme tempera-

tures, the presence of lead pipes, and chemical exposures via hazardous waste sites. 

In particular, extreme temperatures are known to cause morbidities that serve as 

risk factors for dementia (Deschenes 2014). Equally important, these dummies will 

absorb variation across CBSAs in access to medical care and doctors’ diagnostic 

procedures that could lead to spatial variation in dementia diagnosis rates. Addi-

tionally, for the majority of people who never move during our study period, the 

CBSA dummies will control for pre-regulatory sorting across CBSAs on the basis 

                                                 
17 CBSAs are defined according to the Office of Management and Budget as of one or more counties anchored by an urban 
center of at least 10,000 people plus adjacent counties that are socioeconomically tied to the urban center by commuting. For 
people living outside of CBSAs, we create a state-specific, rural dummy variable. 
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of latent characteristics that may serve as risk factors for dementia (Finkelstein, 

Gentzkow, and Williams 2016). 

To control for heterogeneity in dementia risk among individuals living in each 

CBSA, we utilize all of their demographic information in Medicare records along 

with relevant information about their health at the start of the decade. The 𝑋𝑖 vector 

includes indicators for race and gender-specific indicators for integer age at the end 

of 2013 (from 75 through 100).18 These flexible age-by-gender controls absorb the 

nonlinear trends in dementia rates shown in Figure IV.  

The 𝐻𝑖 vector characterizes baseline health in 2004. We employ a full-factorial 

design to control for pre-existing medical conditions known to elevate the risk of 

dementia, adding dummy variables for each of 32 possible combinations of hyper-

tension, diabetes, congestive heart failure, ischemic heart disease, and stroke.19 We 

further control for unobserved heterogeneity in baseline health by adding a fourth-

order polynomial function of gross expenditures on all health care services covered 

by Medicare parts A and B in 2004.20  

To proxy for socioeconomic characteristics that we do not observe for individ-

uals, such as wealth, education, and degree of social engagement, we add a series 

of covariates, 𝑊𝑖, describing the residents of person i’s 2004 Census block group. 

Specifically, we include median household income, income per capita, mean and 

median house value, median rent, median house age, fractions of the housing stock 

that are owner occupied, renter occupied and vacant, fraction of the residents over 

age 65, fractions of residents who report being white, black and Hispanic, and the 

                                                 
18 75 is the minimum age in 2013 because the sample is limited to people who were 65 or older on January 1, 2004. Cente-
narians are grouped into two gender-specific bins because their relatively small numbers prevent us from precisely estimating 
age-specific coefficients. Our findings on air pollution are unaffected by adding age-specific bins beyond age 100. 
19 Because air pollution is a risk factor for these morbidities, controlling for them will also help to absorb the manifested 
effects of individual differences in pollution exposure prior to our study period. 
20 Medicare Parts A and B cover virtually all medical services aside from prescription drugs. This includes doctors’ services, 
preventive care, durable medical equipment, hospital outpatient services, laboratory tests, x-rays, hospital inpatient services, 
nursing facilities, and hospice care. 
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fractions of residents in each of seven educational-attainment bins. These neigh-

borhood-level measures also serve to control for within-CBSA heterogeneity in 

other amenities known to attract wealthier households with higher education. 

Finally, we add a fourth-order polynomial function, 𝑓(∙), in baseline PM2.5 ex-

posure from 2001 through 2003 at person i’s residential location in 2004. This con-

trols for any residual effects of pre-regulatory sorting into more polluted neighbor-

hoods by people who are more likely to receive a future dementia diagnosis. Con-

trolling for baseline neighborhood concentration also makes the identification of α 

in equation (1) similar to a first-differenced model. That is, α is identified by how 

cumulative PM2.5 exposure from 2004 to 2013 affects the probability of a dementia 

diagnosis, conditional on pre-regulatory concentrations in the individuals’ baseline 

neighborhoods. Because the dependent variable is the diagnosed change in cogni-

tion, an individual fixed effect is purged from the econometric model. 

Despite the rich set of controls in equation (1), two potential threats to identifi-

cation remain: measurement error in pollution exposure and omitted variable bias. 

We address both concerns by instrumenting for decadal exposure. Equation (2) pro-

vides the first stage of the 2SLS model: 

(2)   ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 = 𝜋𝑍𝑖 + 𝜉𝑖 + 𝜎𝑋𝑖 + 𝜏𝐻𝑖 + 𝜔𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝜀𝑖 .  

𝑍𝑖 is a vector of instrumental variables created by interacting an indicator for people 

who resided in nonattainment counties in 2004 with the polynomial function of 

baseline exposure that enters the second-stage model. This capitalizes on the 

within-county variation in subsequent PM2.5 exposure due to local regulators’ re-

sponses to nonattainment designations.  

Thus in the longitudinal 2SLS models, α is identified by variation in (instru-

mented) decadal exposure to PM2.5 experienced by people of the same age, race, 

and gender who lived in the same CBSA and who, at the start of the decade, had 

received the same medical diagnoses for dementia risk factors, had the same level 
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of gross annual medical expenditures, and had sorted themselves into neighbor-

hoods with the same baseline levels of PM2.5 and with similar distributions of race, 

income, educational attainment, and property values. The identifying variation in 

PM2.5 arises from three sources. First, some CBSAs include both attainment and 

nonattainment counties, yielding between-county differences in post-regulatory ex-

posures similar to the identifying variation in Chay and Greenstone (2005) and Isen, 

Rossin-Slater, and Walker (2017). Second, within each county, residential locations 

differ in their initial distance from the attainment threshold, yielding within-county 

differences in post-regulatory exposure due to local targeting of pollution hot spots 

similar to the identifying variation in Aufhammer, Bento, and Lowe (2009) and 

Bento, Freedman, and Lang (2015).21 Third, people who moved between 2004 and 

2013 experienced variation in exposure due to their migration paths, similar to the 

identifying variation in Banzhaf and Walsh (2008).   

B. First-stage results 

The pollution exposure histories and first-stage estimates reveal that the EPA’s 

PM2.5 regulation was followed by four notable changes in exposure. First, average 

exposures declined for more than 95% of people between 2001-2003 and 2004-

2013. Second, the declines were larger for people whose 2004 neighborhoods were 

more polluted at baseline (2001-2003). Third, conditional on baseline neighbor-

hood pollution, the declines were larger for people whose 2004 neighborhoods were 

in nonattainment counties. Fourth, the nonattainment county differential declines 

nonlinearly as we approach the regulatory threshold from below. The last two 

sources of variation power our econometric model. 

Figure VI uses the coefficients on the instruments, 𝜋, to illustrate the identifying 

                                                 
21 Appendix Figure A4 illustrates the first two sources of identifying variation by showing within-CBSA and within-county 
variation in nonattainment status conditional on baseline PM2.5 concentrations, using New York and Chicago as examples. 
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variation in PM2.5.22 Intuitively, the partial effect of nonattainment on post-regula-

tory PM2.5 exposure is negative. The size of the effect declines in baseline concen-

trations as we approach the regulatory threshold from below. This trend mirrors 

Auffhammer, Bento and Lowe’s (2009) estimate for the partial effect of the EPA’s 

1990 county nonattainment designations for PM10 on subsequent PM10 concentra-

tions (see their Figure 4).  

FIGURE VI: ESTIMATED PARTIAL EFFECT OF NONATTAINMENT ON POST-REGULA-
TORY PM2.5 EXPOSURE, BY PRE-REGULATORY CONCENTRATIONS 2001-2003 

 
Note: The figure shows the average effect of the nonattainment designation on the average conditional change in decadal 
PM2.5 concentrations. The dotted lines denote 96% confidence bands constructed from 1,000 bootstrap replications, with 
clustering on Census block group. 

The partial effect of nonattainment on individual PM2.5 exposure in Figure VI 

                                                 
22 The first-stage F statistic is 637, suggesting that any finite sample bias is negligible. Table A2 reports model coefficients. 
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is noticeably smaller than the reduction implied by visual comparison between at-

tainment and nonattainment counties’ average concentrations in Figure II. This is 

because the covariates in (1)-(2) absorb much of the regulation’s effect. In particu-

lar, spatial dummies absorb the between-CBSA variation in PM2.5 reductions. To 

approximate the regulation’s full effect on average PM2.5 reductions, we regress 

differences between individuals’ decadal exposures and their baseline exposures on 

the county nonattainment indicator. This differences-in-differences regression 

shows that average PM2.5 exposure declined by -1.24 g/m3 more among those in 

nonattainment counties than those living in attainment counties (with declines of 

3.04 g/m3 and 1.80 g/m3 , respectively). We interpret this difference as the regu-

lation’s approximate effect on exposure in nonattainment counties for the purposes 

of policy scenarios considered in Section VII. This reduction is slightly larger than 

in Figure II mainly because of within-county variation in where people live in rela-

tion to monitors. 

C. Second-stage results 

Table I presents results from models with and without covariates and instru-

ments. The dementia indicator is multiplied by 100 so that PM2.5 coefficients rep-

resent percentage point (pp) changes in the probability of receiving a dementia di-

agnosis. Standard errors are robust to heteroscedasticity and are clustered at the 

Census block group level to allow for spatial correlation in diagnoses.23  

Column (1) shows the result from an OLS regression that includes only decadal 

PM2.5 and CBSA-specific intercepts. A 1 g/m3 increase in average residential con-

centrations of PM2.5 from 2004 through 2013 is associated with a 0.75 pp increase 

in the probability of receiving a dementia diagnosis by the end of 2013. About 28% 

of this association persists in column (2) when we add all observed measures of 

                                                 
23 Because our instrumental-variables-based measure of pollution varies at the fine level of the ZIP+4, we cluster our standard 
errors at the coarser level of the block group.  Our results are robust to clustering at the even coarser county level.  
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baseline health and PM2.5 exposure, demographics and socioeconomic status.  

Columns (3) and (4) show the 2SLS analogs to the OLS models in columns (1) 

and (2). Using instrumental variables increases the estimates for PM2.5’s effect and 

makes the estimates less sensitive to the inclusion of individual covariates.24 The 

second-stage coefficient on PM2.5 in our main specification, column (4), is about 

seven times larger than the corresponding OLS estimate from column (2), con-

sistent with substantial measurement error in pollution exposure.25 The coefficient 

implies that a 1 g/m3 increase in average PM2.5 from 2004 through 2013 increased 

the probability of a dementia diagnosis by the end of 2013 by 1.68 pp.26   

TABLE I—DECADAL EXPOSURE TO PM2.5 AND DEMENTIA IN 2013 

  
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 other-
wise. Col (1) is a univariate OLS regression with CBSA-specific intercepts. Col (2) adds all covariates for baseline health in 
2004, individual demographics, demographics for the person’s Census block group, and pre-regulatory PM2.5 levels at their 
residence from 2001-2003. Cols (3) and (4) are the 2SLS analogues to Cols (1) and (2), respectively. Coefficients on all other 
covariates in the first and second stage models in Col (4) are reported in Appendix Table A2. Asterisks indicate statistical 
significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by Census block group.  

                                                 
24 Deryugina et al. (2019) report similar differences between OLS and 2SLS results in estimating the effect of daily pollution 
spikes on mortality among the Medicare population. 
25 The first stage results are reported in Table A2. The p-value from a Sargan test of overidentifying restrictions is 0.34, so 
we fail to reject the joint hypothesis that our instruments are valid and that the model is correctly specified. Fitted probabilities 
of receiving a dementia diagnosis lie between zero and one for 99.9% of individuals. 
26 Coefficients on the remaining covariates are reported in Appendix Table A2. We find that diagnosis rates tend to be higher 
for African-Americans (+3.7 pp) and Hispanics (+3.4 pp) relative to Asians (+0.5 pp) and Whites (+0.8 pp), with “other 
race” as the omitted category. Diagnosis rates also decline by about 1% for every $100,000 of additional neighborhood 
income per capita and tend to be lower in neighborhoods with higher educational attainment. For example, a 10 pp increase 
in the fraction of block group residents with graduate degrees (relative to less than 8th grade education) is associated with a 
0.5 pp reduction in the dementia diagnosis probability.  

 (1) (2) (3) (4)

0.751*** 0.209* 1.164*** 1.679***

(0.06) (0.11) (0.09) (0.49)

individual & neighborhood covariates  x  x

specification OLS OLS 2SLS 2SLS

number of individuals 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22.0 22.0 22.0 22.0

decadal PM2.5 (1 μg/m3)
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V.   Assessing the Effects of Selection and Sorting on the Main Results 

A. Selection on Survival 

Prior work has found that PM2.5 kills people on Medicare (Di et al. 2017, 

Deryugina et al. 2019). For example, Deryugina et al. uses an instrumental-varia-

bles regression to conclude that a 1 μg/m3 increase in PM2.5 for one day caused a 

0.18% increase in mortality over three days. When we estimate the 2SLS specifi-

cation in equations (1)-(2) with decadal mortality as the dependent variable, we find 

that a 1 g/m3 increase in average PM2.5 from 2004 through 2013 increases mortal-

ity by 2.4 percentage points, equivalent to 6% of the decadal mortality rate.27 These 

results, combined with the concern that unobserved aspects of health that determine 

survival may be correlated with unobserved aspects of heath that determines de-

mentia, suggest that sample-selection bias may be an issue.  

For example, suppose unobserved health affecting survival is negatively corre-

lated with unobserved health affecting dementia, i.e., sicker people who are more 

likely to die sooner are also more likely to be diagnosed with dementia if they live. 

In this case, selection induces negative correlation between the error in equation (1) 

and our instrumented measure of PM2.5. This classic form of selection bias would 

yield a downward-biased estimate of PM2.5’s effect on dementia in the selected 

sample.28  

We address this classic form of selection bias using a control-function approach 

based on Heckman (1979) and Heckman and Robb (1986). We begin by estimating 

a linear probability model of decadal survival, Si, with the same covariates as equa-

tion (2) plus an additional vector of instruments, 𝑀𝑖. 

(3)  𝑆𝑖 = 𝜆𝑍𝑖 + 𝜁𝑖 + 𝜑𝑋𝑖 + 𝜇𝐻𝑖 + 𝜌𝑊𝑖 + 𝑓 (∑
𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝛿𝑀𝑖 + 𝜐𝑖.  

                                                 
27 Table A3 reports results from mortality models that parallel the specifications used in Table I. 
28 A less intuitive, but nonetheless possible, concern would be that the unobserved health determining survival was positively 
correlated with the unobserved health determining dementia. This would induce a positive correlation between the error in 
equation (1) and our instrumented measure of PM2.5 and cause an upward bias in our estimate. 
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We define 𝑀𝑖 to include indicators for diagnoses of non-smoking-related cancers 

(leukemia, lymphoma, and cancers of the breast, prostrate, colon, rectum, and en-

dometrium) from the CMS’s Chronic Conditions Data Warehouse file. These can-

cers, which impact decadal survival, are assumed to be unrelated to latent features 

of health that affect the probability of a dementia diagnosis. This exclusion re-

striction is supported by the medical literature on dementia (Driver et al. 2012, Gan-

guli 2015).29 We then use the survival function residuals, 𝜐𝑖, to define an additional 

control variable that we include in equations (1) and (2). Given the well-docu-

mented equivalence of 2SLS and control-function estimation in linear models, we 

estimate the following control-function equation, 

(4)   ∆𝑦𝑖 = α ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜂𝑖 + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) +

                      𝜙1�̂�𝑖 + 𝜙
2

�̂�𝑖 + 𝜖�̃�,     where  𝜖�̃� = 𝜖𝑖 − 𝜙1𝜐𝑖 − 𝜙
2

�̂�𝑖. 

𝜐𝑖 is the control formed by the residuals from the survival equation in (3) and 𝜀�̂� is 

the control formed by the residuals from the first-stage equation, i.e., a modified 

version of equation (2) that includes �̂�𝑖 as an additional control. Because we esti-

mate �̂�𝑖 and 𝜀�̂� in prior stages, we bootstrap standard errors over all three regres-

sions, clustering at the level of the block group. 

B. Selection and sorting based on sensitivity to PM2.5 

Thus far we have assumed a common coefficient on PM2.5. We now extend the 

control-function model to specify heterogeneous coefficients on PM2.5 and allow 

the unobserved heterogeneity in these sensitivities to be correlated with survival 

and/or residential location choice.  

First we allow latent health determining survival to be correlated with latent 

                                                 
29 We provide further evidence in support of the exclusion restrictions below when we discuss results from placebo models 
that include individuals’ cancer diagnoses as explanatory variables and are found to have no effect on dementia. Thus, our 
exclusion restrictions are supported by exceptionally rich data on individuals’ medical diagnoses as well as medical literature 
and placebo tests. This allows us to sharpen our estimator relative to bounding methods that do not require exclusion re-
strictions (Lee 2009).  
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heterogeneity in cognitive sensitivity to PM2.5. The motivating concern is that our 

survivor sample may be comprised of people who were either more vulnerable or 

more resilient to pollution. We test this concern by implementing a control-function 

approach motivated by Garen (1984).30 This approach begins by specifying a het-

erogeneous coefficient on PM2.5 exposure: 𝛼𝑖 = �̅� + 𝜏𝑖 where �̅� is the population 

mean of 𝛼𝑖 and 𝜏𝑖 captures deviations from this mean. Assuming the heterogeneity 

in sensitivity is linearly related to latent health, �̅� can be identified by extending (4) 

to include an interaction between the survival-equation residual and decadal PM2.5 

exposure following Garen (1984) and Wooldridge (2015).31 

(5)   Δ𝑦𝑖  = �̅� ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜂𝑖 + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 +  𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) +

                       𝜙1�̂�𝑖 + 𝜙2𝜀�̂� + 𝜓1𝜐𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜖�̃�,  

         where    𝜖�̃� =  𝜖𝑖 − 𝜙1𝜐𝑖 − 𝜙2𝜀�̂� − 𝜓1𝜐𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 . 

Equation (5) also provides a formal test of sensitivity-based selection.  We can re-

cover an estimate of the average sensitivity among survivors: �̅� + 𝜓1𝐸[𝜐𝑖|𝑆𝑖 = 1]. 

Therefore, 𝜓1𝐸[𝜐𝑖|𝑆𝑖 = 1] measures the degree to which the average sensitivity 

among survivors differs from the population-wide average; if this term is greater 

than (less than) zero, the survivors are, on average, more (less) sensitive than the 

population as a whole. 

A separate concern is that sensitivity could affect residential sorting, e.g., peo-

ple who are more sensitive to PM2.5 may live in more polluted neighborhoods. In 

this case, the instrument for pollution could be correlated with the endogenous lo-

cation choice, causing 2SLS to recover the local average treatment effect among a 

non-random subset of the population. We modify (5) to address this concern by 

                                                 
30 See Heckman and Vyltacil (1998), Card (2001) and Wooldridge (2003) for discussions of this and similar approaches.  
31 Formally, the identifying assumptions are that 𝐸[𝜖𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜙1𝜐𝑖 + 𝜙2𝜀𝑖, 𝐸[𝜏𝑖 |𝜐𝑖 , 𝜀𝑖] = 𝜓1𝜐𝑖, and that unobservables are 
independent of the regressors in equations (2)-(3). 
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interacting decadal PM2.5 exposure with the attainment-based control function in-

stead of the survival-based control function; i.e., replacing 𝜓1𝜐𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004  

with 𝜓2𝜀�̂� ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 . The resulting model parallels the Garen-type specifica-

tions used in Chay and Greenstone (2005), Bento, Friedman, and Lang (2015), and 

Schlenker and Walker (2017) to study air pollution’s effects on housing prices and 

hospital admissions. It provides a consistent estimator of the population-wide de-

mentia-sensitivity to PM2.5 in the presence of Tiebout sorting on random coeffi-

cients.  

Finally, we generalize equation (5) to allow heterogeneity in PM2.5 sensitivity 

to be correlated with both survival-based sample selection and choice-based resi-

dential sorting. In other words, we generalize (5) to include both interaction terms: 

𝜐𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004  and 𝜀�̂� ∑

𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 , nesting the prior two specifications.32 

C. Results 

The first column in Table II reports the estimate for α using equation (4) to 

augment our main 2SLS model to control for selection on survival. The coefficient, 

2.33 pp, is larger than the 2SLS estimate from Table I. This is consistent with clas-

sic selection bias caused by latent health factors that make people who are more 

likely to survive the decade also less likely to develop dementia.33  

The second column reports results using equation (5) to control for survival-

based selection on heterogeneity in PM2.5 sensitivity. The coefficient is effectively 

unchanged from the first column. Likewise, our estimate of 𝜓1 is close to zero, 

suggesting that heterogeneity in PM2.5 sensitivity is not correlated with survival.34  

                                                 
32 The final two specifications also assume that the expected value of the parameter governing heterogeneity is linearly related 
to the survival-function residuals and first-stage residuals: 𝐸[𝜏𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜓2𝜀𝑖 and 𝐸[𝜏𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜓1𝜐𝑖 + 𝜓2𝜀𝑖, respectively. 
33 In our estimation of the survival function, equation (3), the instruments are jointly significant at the 99% level and indi-
vidually significant at the 99% level with the exception of prostate cancer, as may be seen in Appendix Table A4. 
34 The point estimate implies that those who survived were slightly less sensitive than those who died. The average sensitivity 
among survivors is calculated as �̅� + �̂�1𝐸[𝜐𝑖|𝑆𝑖 = 1] = 2.339 − 0.016 ∗ 0.3009 = 2.334, which is trivially lower than the 
sensitivity of the population as a whole. 
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The third column presents results from the alternate version of equation (5) that 

allows people to sort across neighborhoods based on heterogeneity in αi. The esti-

mate for mean sensitivity is effectively unchanged from the prior two columns and 

the 95% confidence interval for the coefficient on 𝜓2 includes zero, suggesting that 

people were not sorting based on cognitive sensitivity to PM2.5. This may be be-

cause people do not know their cognitive sensitivity to PM2.5 or because the heter-

ogeneity is minimal. 

TABLE II—ESTIMATES ACCOUNTING FOR SELECTION AND SORTING 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 other-
wise. Col (1) controls for selection on mortality. Col (2) extends Col (1) to allows people to differ in their vulnerability to 
PM2.5, with vulnerability being potentially correlated with latent factors affecting survival. Col (3) extends Col (1) to allow 
people to differ in their vulnerability to PM2.5, with vulnerability being potentially correlated with latent factors affecting 
residential sorting on air pollution. Col (4) nests the models in the first three columns to control for all three mechanisms 
simultaneously. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using standard errors 
clustered by initial Census block group and bootstrapped over all stages of estimation.  

Finally, the last column presents results from the most general specification that 

 (1) (2) (3) (4)

2.334*** 2.339*** 2.328*** 2.332***

(0.51) (0.51) (0.51) (0.51)

Corrects for selection based on survival x x x x

αi allowed to vary with survival x

αi allowed to vary with attainment x

αi allowed to vary with survival and attainment x

-27.264*** -27.082*** -27.256*** -27.080***

(0.17) (0.93) (0.17) (0.93)

-2.236*** -2.328*** -2.569*** -2.569***

(0.53) (0.51) (0.77) (0.77)

-0.016 -0.016

(0.08) (0.08)

0.030 0.030

(0.05) (0.05)

number of people in survival regression 2,384,195 2,384,195 2,384,195 2,384,195

number of people in dementia regression 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22 22 22 22

share who survive through 2013 61 61 61 61

decadal PM2.5 (1 μg/m3)

attainment control * decadal PM2.5, y2

survival control * decadal PM2.5, y1

attainment control, f2

survival control, f1
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allows heterogeneity in αi to be simultaneously related to the survival-based selec-

tion process and the residential sorting process. As before, we find that a 1 g/m3 

increase in average PM2.5 from 2004 through 2013 increased the probability of a 

dementia diagnosis by 2.33 percentage points.  

Overall, Table II suggests that, if anything, classic selection on survival causes 

our main estimates to be attenuated relative to the population average treatment 

effect. However, these results do not appear to be influenced by differential sensi-

tivities to PM2.5, either through selection or sorting.   

VI. Additional Sensitivity Analysis 

A. Alternative measures of dementia 

Table III shows results from models that first repeat the estimation after adding 

people who self-selected into Medicare Advantage plans and then decompose our 

main result into PM2.5’s effects on different types of dementia diagnoses. Column 

(1) repeats our main estimate for convenience. In column (2), we expand the sample 

to include people who exited traditional Medicare at some point after 2004 to enroll 

in a Medicare Advantage plan that included prescription drug coverage at some 

point from 2006 to 2013. This expands the sample by 278,395 people (accounting 

for 94% of the sample who switched to MA and survived through 2013 (Figure 

III)). Because we do not observe claims-based diagnoses for this sample but can 

observe their prescription drug claims from 2006 onward, we redefine the dementia 

measure as having either a claims-based diagnosis or a claim for a prescription drug 

to treat symptoms of Alzheimer’s disease. The net effect of expanding the sample 

and altering the measure of dementia is to lower the sample dementia rate in 2013 

to 21%. The resulting 2SLS coefficient, 1.69 pp, is nearly identical to our main 

estimate, indicating that our main estimate is not biased by selection into Medicare 

Advantage. 
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TABLE III—ESTIMATES USING ALTERNATIVE MEASURES OF DEMENTIA 

 
Note: Col (1) repeats the main specification from Table I. Col (2) extends the sample to include people who switched to a 
Medicare Advantage plan with prescription drug coverage at some point between 2006 and 2013, while redefining the de-
pendent variable to be 100 for people who are diagnosed with dementia and/or take prescription drugs for Alzheimer’s 
disease. Col (3) is the same as (1) but defines the dependent variable as dementia cases without an Alzheimer’s diagnosis 
and Col (4) defines it as Alzheimer’s disease specifically. Col (5) is the same as (1) but adds an indicator for whether people 
had a stroke by 2013. Summing the percentages of people enrolled in traditional Medicare and Medicare Advantage rounds 
to just over 100% because a small fraction of people switched between the two programs in 2013. Asterisks indicate statistical 
significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block 
group. 

Columns (3) and (4) repeat the estimation of the model in (1) after stratifying 

the dependent variable to decompose the relative impacts on dementia cases with 

and without an associated diagnosis of Alzheimer’s disease. Our decomposition 

suggests that Alzheimer’s accounts for 64% of the dementia cases that our model 

attributes to long-term PM2.5 exposure. A caveat to this interpretation is that it is 

difficult for doctors to distinguish between Alzheimer’s and other forms of demen-

tia without an autopsy or extensive brain imaging, leaving some doctors reluctant 

to diagnose living patients with Alzheimer’s specifically, as opposed to dementia 

generally. Therefore, as a further test of which types of dementia drive our results, 

we repeat estimation of the model in column (1) after adding a dummy for whether 

the individual had a stroke by the end of 2013. Strokes cause vascular dementia, 

the second most common form of dementia behind Alzheimer’s, and may be caused 

by short-term spikes in air pollution. Hence, the stroke variable absorbs any effects 

 (1) (2) (3) (4) (5)

1.679*** 1.692*** 0.611 1.068*** 1.696***

(0.49) (0.46) (0.38) (0.39) (0.48)

dependent variable

claim-     

based 

diagnosis

claim-          

based 

diagnosis        

or drug

claim-        

based 

diagnosis 

without 

Alzheimer's

claim-       

based 

diagnosis 

with 

Alzheimer's

claim-     

based 

diagnosis

dependent variable mean 22 21 12 10 22

Number of individuals 1,257,232 1,535,746 1,257,232 1,257,232 1,257,232

% in traditional Medicare in 2013 100 82 100 100 100

% in Medicare Advantage in 2013 1 19 1 1 1

decadal PM2.5 (1 μg/m3)
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of PM2.5 on dementia that occur due to stroke. Our results suggest that the proba-

bility of being diagnosed with dementia is 19.1 pp higher for those who had a stroke 

(95% CI = [18.8,19.3]). However, controlling for this has virtually no effect on the 

PM2.5 coefficient, as shown in column (5). This reinforces the conclusion that long-

term exposure to PM2.5 increases the risk of Alzheimer’s disease specifically.  

B. Alternative measures of PM2.5 exposure 

Table IV summarizes results from alternative approaches to measuring PM2.5 

exposure. In column (2) we utilize within-county variation in monitor readings, 

similar to Bento, Freedman, and Lang (2015). Specifically, we replace the CBSA 

dummy variables with county dummy variables, and we stratify the county nonat-

tainment indicator according to whether the average PM2.5 concentration from 2001 

to 2003 at the air quality monitor closest to a person’s residence exceeded the fed-

eral standard. This generates three indicators that vary within counties: (i) nonat-

tainment county with nearest monitor exceeding the standard, (ii) nonattainment 

county without nearest monitor exceeding the standard, and (iii) attainment county 

with nearest monitor exceeding the standard. As in our main specification, each 

indicator is interacted with the polynomial function of baseline exposure. This 

yields an estimate of 1.67 pp, nearly the same as our main estimate in column (1).35 

Column (3) replaces our “balanced monitor panel” measure of exposure with a 

measure constructed from an unbalanced panel of all monitors in operation each 

year (between 871 and 1,137 monitors per year). The unbalanced panel may im-

prove efficiency by using all available ground-level information on pollutant con-

centrations, but it also may introduce additional measurement error. We find that 

                                                 
35 Appendix Figure A5 shows the estimated partial effects of each interaction. We find patterns consistent with strategic 
regulatory targeting. Our estimates suggest that county nonattainment designations led to slightly larger reductions in long-
term exposures for people living closest to nonattainment monitors at baseline exposure levels below 11.7 g/m3. Moreover, 
we find that nonattainment designations produced slight increases in PM2.5 for people in attainment counties living near 
nonattainment monitors. This pattern could result from regulatory actions diverting pollution from areas near nonattainment 
monitors to areas in adjacent attainment counties (e.g., siting of new production facilities).  
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using the unbalanced panel reduces the instrument’s power to explain decadal PM2.5 

exposures in the first stage and yields a smaller second-stage estimate of 1.26 pp.36  

TABLE IV—ESTIMATES USING ALTERNATIVE MEASURES OF PM2.5 EXPOSURE 

 
Note: Col (1) repeats our main result that is modified for each remaining column. Col (2) stratifies the nonattainment county 
instrument according to whether the monitor closest to a person’s residence was in attainment while replacing CBSA dum-
mies with county dummies. Col (3) replaces our preferred measure of pollution (based on a balanced panel of continuously 
operating monitors) with data from an unbalanced panel of all monitors in operation each year. Col (4) measures pollution 
at the coarser 5-digit ZIP code level. Col (5) replaces the 4th order polynomial function of baseline pollution exposure with a 
“spline” function based on dummies for 72 baseline exposure bins, each of which has a width of 0.33 micrograms per cubic 
meter. Col (6) stops tracking cumulative exposure among dementia patients at the time they move to new residences. Col (7) 
strops tracking cumulative exposure at the point when we first observe their dementia diagnosis. 

In column (4) we measure PM2.5 at the centroids of peoples’ 5-digit ZIP code 

areas instead of their 9-digit ZIP mail delivery points. This coarser approach rec-

ognizes that exposures may occur over larger areas as people travel outside their 

immediate neighborhoods for activities such as shopping and recreation. The esti-

mated effect of PM2.5 on dementia is 1.66 pp, virtually identical to our main result. 

Column (5) replaces the fourth-order polynomial function of baseline (2001-

2003) residential PM2.5 concentrations with a more flexible “spline” function. We 

partition neighborhoods into 72 bins by baseline concentrations (in 0.33 g/m3 in-

crements) and add an indicator variable for each bin. This again produces a similar 

                                                 
36 The first-stage F-statistic is 394 for the unbalanced panel compared to 637 for the balanced panel. 

 (1) (2) (3) (4) (5) (6) (7)

1.679*** 1.666*** 1.262*** 1.658*** 1.650*** 1.855*** 1.921***

(0.49) (0.43) (0.49) (0.51) (0.49) (0.54) (0.54)

baseline specification x

IV = county x monitor attainment  x    

unbalanced monitor panel  x   

5-digit ZIP assignment of PM2.5 x

spline function of baseline PM2.5  x

exposure fixed at post-diagnosis move   x

exposure fixed at diagnosis   x

number of individuals 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22.0 22.0 22.0 22.0 22.0 22.0 22.0

decadal PM2.5 (1 μg/m3)
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PM2.5 coefficient (1.65 pp). 

A remaining concern is that our estimates could reflect reverse causality via 

Tiebout sorting if dementia diagnoses cause people to move to more polluted areas 

(e.g., if assisted living facilities tend to be in more polluted areas). We test this 

hypothesis by fixing annual average exposure at the point of a person’s first post-

diagnosis move. For example, if a person is diagnosed with dementia in 2010 and 

moves to a new residence in 2012, then we replace the decadal measure of their 

PM2.5 exposure with their annual average exposure from 2004 through 2011. Col-

umn (6) shows that this approach increases our estimate slightly—the opposite of 

what would be implied by reverse causality. This is because movers with dementia 

tend to move to less polluted areas.37 Column (7) takes this logic one step further 

by fixing dementia patients’ cumulative exposures in their diagnosis years so that, 

in the prior example, we would use annual average exposure from 2004-2010. Once 

again, the coefficient increases slightly, further reinforcing that our main approach 

to measuring pollution exposure does not impart an upward bias on our estimates. 

C. Alternative exposure durations 

We focus on decadal PM2.5 exposure because 10 years is the longest interval 

over which our research design and data enable us to identify an effect, but it is 

straightforward to use the same design to estimate effects for shorter intervals. To 

examine how PM2.5’s effect on the probability of a dementia diagnosis varies with 

exposure duration, we estimate models for two years to ten years of exposure (i.e., 

exposures from 2004-2005, 2004-2006,…, 2004-2013). These estimates are from 

models that parallel our main 2SLS specification but replace the decadal exposure 

measure with a shorter integer-year duration. At the two-year mark in 2005 the 

                                                 
37 We show exposure conditional on migration status and dementia diagnosis in Appendix Figure A6. 
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estimation sample includes 2.4 million people. As we move from 2005 to 2013, the 

sample diminishes due to death and switching into Medicare Advantage. 

FIGURE VII: ESTIMATED EFFECTS OF PM2.5 by EXPOSURE DURATION 

 

   Figure VII shows our estimates for the effects of 1 μg/m3 increases in average 

residential concentrations from 2004 to the interval endpoints shown on the hori-

zontal axis, along with 95% confidence intervals. The estimates increase steadily 

with exposure duration and remain statistically distinguishable from zero beyond 

the eighth year (2011). Appendix figure A7 shows that the figure looks nearly the 

same when we reconstruct it after restricting the sample to people who survived to 

2013; i.e., holding the longitudinal sample fixed as we adjust exposure duration. 

This comparison reinforces our conclusion that our main findings are not biased 

away from zero due to attrition from death and transition to Medicare Advantage. 

 
D. Placebo tests 
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Finally, we estimate a series of placebo models designed to test whether un-

specified threats to identification cause spurious positive relationships between pol-

lution and the onset of poor health generally. We examine five chronic conditions 

that are not known to be caused by air pollution but share similarities with dementia 

in terms of how they affect the body, how they are diagnosed, and how diagnosis 

rates are correlated with age, race, and gender. These include glaucoma, fibromyal-

gia, breast cancer, prostate cancer, and peripheral vascular disease. Glaucoma is a 

progressive disorder with nerve degeneration that is strongly associated with age; 

fibromyalgia affects mood and behavior and can be difficult to diagnose; breast 

cancer and prostate cancer can be slow to progress and have gender-specific diag-

nosis rates; and peripheral vascular disease is associated with reduced blood circu-

lation. Conditional on age and gender, dementia, glaucoma, and peripheral vascular 

disease are all more common among African-American and Hispanic groups rela-

tive to non-Hispanic white groups.38 

TABLE V—ESTIMATES OF PM2.5 ON PLACEBO OUTCOMES 

 
Note: the first column repeats our main result for comparison. The next five columns report results using the same model but 
replacing dementia with each of the placebos. The last column estimates the same model using dementia in 2004 as the 
outcome. Asterisks indicate statistical significance at the 10%, 5%, and 1% levels based on robust standard errors clustered 
by Census block group. 

Finding large, positive, and statistically significant effects of PM2.5 on these 

                                                 
38 The placebo model samples are slightly smaller than our main dementia sample. This is because the placebo models parallel 
our dementia specification in excluding people who had been diagnosed with the placebos by 2004. While the placebo models 
also add people who had been diagnosed with dementia in 2004, but not the placebos, this addition is more than offset by the 
prior-diagnosis-with-placebo exclusions because the 10-year survival rate for people with dementia in 2004 is low (16%). 

 
Dementia 

in 2013
Glaucoma

Fibro-

myalgia

Breast 

cancer

Prostate 

cancer

Peripheral 

vascular 

disease

Dementia 

in 2004

1.679*** -1.026* -0.465 -0.077 -0.189 0.581 -0.065

(0.49) (0.53) (0.53) (0.21) (0.23) (0.60) (0.25)

number of people 1,257,232 1,065,603 1,182,076 1,248,239 1,249,959 1,186,008 2,673,519

share with outcome 22 17 18 3 4 27 11

decadal PM2.5                                          

(1 μg/m3)
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placebo morbidities would signal that our 2SLS research design may be compro-

mised. Table V shows that this is not the case. We fail to reject the null hypothesis 

of zero effect at the 5% significance level for each placebo outcome.39  

The last column of Table V summarizes a final placebo specification that re-

peats 2SLS estimation on a larger sample using a dementia diagnosis in 2004 as the 

outcome. Anticipatory Tiebout sorting on factors that contribute to dementia and 

are correlated with PM2.5 but are not accounted for by our model could yield a re-

lationship between dementia in 2004 and PM2.5 exposure over the subsequent dec-

ade. However, this is not the case. The resulting coefficient is close to zero and 

estimated relatively precisely. We conclude that placebo models support our re-

search design.  

VII. Interpretation and Policy Implications 

A. Assessing the magnitude of the PM2.5 effects 

Our main point estimate (Table I, column (4)) suggests that a 1 μg/m3 increase 

in 10-year average residential concentrations of PM2.5 from 2004 to 2013 increased 

the probability of receiving a dementia diagnosis by 1.68 pp. This is equivalent to 

a 7.5% increase relative to the dementia diagnosis rate among our sample. To pro-

vide context for these results, a 1 μg/m3 change is equivalent to 9.1% of the average 

person’s exposure during our study period and 59% of a standard deviation. Thus, 

a 1 μg/m3 increase may be understood as a moderate change in exposure.  

Table VI compares our PM2.5 result to the coefficients we estimated on other 

dementia risk factors that were included as covariates in the model. For instance, 

                                                 
39 Our criteria for selecting placebos excludes cardiopulmonary conditions and other illnesses that have previously been 
linked to air pollution. When we instead ignore these criteria and repeat estimation of our main specification for each of the 
15 most common chronic conditions among the Medicare population (Centers for Medicare and Medicaid Services 2012) 
including those linked with pollution, we find a positive effect of PM2.5 at the 5% level for only one disease besides dementia: 
chronic obstructive pulmonary disease. This reinforces findings from prior large cohort studies that found PM2.5 to cause and 
exacerbate COPD (e.g. Guo et al. 2018). We leave a comprehensive analysis of PM2.5 on morbidity to future research. 
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our estimate for the effect of a 1 μg/m3 increase in decadal PM2.5 is about twice as 

large as the estimated increase in dementia risk associated with having been diag-

nosed with hypertension at the beginning of the decade and not diagnosed with any 

of the other health risk factors (0.8 pp). Our PM2.5 estimate is somewhat smaller 

than risks associated with pre-existing diagnoses of the other chronic conditions 

individually, which range from a 2.1 pp increase for ischemic heart disease only to 

a 8.0 pp increase for stroke only. Someone diagnosed with all five conditions by 

2004 had a 20.6 pp higher probability of being diagnosed with dementia by the end 

of 2013. Aging provides another opportunity for comparison. Focusing on females, 

our PM2.5 estimate is approximately one-quarter of the conditional increase associ-

ated with aging from 75 to 80 and one tenth of the conditional increase associated 

with aging from 75 to 85.   

TABLE VI. COMPARING RELATIVE RISKS FOR PM2.5 AND OTHER FACTORS  

  
Note: The table reports point estimates and 95% confidence intervals for dementia risk factors based on the model in Table 
I, Col(4). Appendix Table A2 reports the full set of model coefficients. 

B. Benefits of the EPA’s 1997 PM2.5 regulation from dementia cases avoided 

The EPA’s benefit-cost analysis of the CAA excludes the benefits of dementia 

Risk Factor

Percentage point 

increase in dementia 

diagnosis probability

hypertension in 2004 0.8 0.6 1.0

decadal PM2.5 (1 μg/m3) 1.7 0.7 2.6

ischemic heart disease in 2004 2.1 1.7 2.5

diabetes in 2004 3.3 2.8 3.8

congestive heart failure in 2004 4.3 3.1 5.5

Aging from 75 to 80 (women) 6.0 5.6 6.4

stroke in 2004 8.0 6.9 9.1

aging from 75 to 85 (women) 15.2 14.8 15.7

All five chronic conditions in 2004 20.6 19.5 21.6

95% 

confidence 

interval
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cases avoided (US EPA 2011). Dementia is not counted among the set of morbidi-

ties attributed to air pollution, nor is it included among the channels through which 

air pollution is assumed to increase mortality.40 We take a first step toward filling 

this gap by using our estimates to approximate the value of dementia cases avoided 

in 2013 in nonattainment counties due to the 1997 PM2.5 regulation.  

We estimate the regulation’s effect on annual average PM2.5 exposure from 

2004 to 2013 for people age 75 and above in nonattainment counties using our dif-

ference-in-difference estimate of -1.24 g/m3. Multiplying this reduction by our 

main estimate for the effect of a 1 g/m3 increase in decadal exposure on the prob-

ability of a dementia diagnosis (1.68 pp) implies that the regulation reduced the 

dementia rate by 2.1 pp. Multiplying this by the Census Bureau’s estimate for the 

size of the 75-and-over population in 2013 in counties that were nonattainment in 

2005 (8.7 million) implies that the PM2.5 regulation reduced the number of demen-

tia cases by approximately 182,000.  

Because we are unaware of any revealed preference estimate of the value of 

reducing dementia risk, we approximate the benefit of cases avoided by using prior 

estimates for the value of a quality-adjusted life year (QALY), in conjunction with 

prior estimates for dementia’s impacts on quality of life and the Medicare data for 

an estimate of dementia’s effects on life expectancy. Appendix B describes our 

calculations in detail. We first use our data to calculate two statistics: the average 

effect of a dementia diagnosis on life expectancy (-6.1 years) and the average post-

diagnosis survival period (2.7 years). Then we use age- and morbidity-specific 

QALY weights from a review of the health economics literature to translate demen-

tia’s effects on morbidity and mortality into a measure of lost QALYs. This results 

in a central estimate of 5.9 QALYs lost per dementia case, with a range from 5.5 to 

                                                 
40 The EPA’s mortality estimates are calibrated to the results of cohort studies by Pope et al. (2002) and Landen et al (2006), 
both of which found that PM2.5 increased all-cause mortality via cardiovascular and lung cancer deaths but not deaths due to 
other causes such as dementia. 
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6.4 reflecting upper and lower bounds on the severity of symptoms. Finally, we 

assign a value per QALY. A conventional but arbitrary value is $100,000. Empiri-

cal studies typically report much higher values. For example, Aldy and Viscusi 

(2007) estimated a value of $300,000 for those age 65 and above. We consider a 

range of values with $200,000 as the midpoint, a lower bound of $100,000 and an 

upper bound of $300,000. The midpoint estimates of the QALYs lost per dementia 

diagnosis and the value of a QALY imply a value per statistical case of dementia 

avoided of approximately $1.2 million. Multiplying this by our estimate of the num-

ber of cases avoided implies that the PM2.5 regulation yielded benefits of $214 bil-

lion for the cohort of people age 75 and above in nonattainment counties. Using our 

lower bound estimates for the lost QALYs per diagnosis and the value of a QALY 

yields a benefit of $100 billion, while using the upper bound indicates a benefit of 

$349 billion. 

We interpret these estimates as likely lower bounds on the benefits of the EPA’s 

1997 PM2.5 standard for several reasons. First, we exclude any benefits that accrued 

to people in attainment counties, for example due to spatial spillover of PM2.5 re-

ductions. We also exclude health benefits for people who were under age 65 at the 

start of the decade, benefits for those who died during the decade, and any health 

benefits other than reduced dementia rates for people who were over 65 and sur-

vived to the end of the decade.  

C. Assessing the effect of lowering the regulatory threshold on dementia 

We conclude our policy analysis by considering the EPA’s 2012 lowering of 

the federal cap on maximum allowable annual average PM2.5 concentrations from 

15 μg/m3 to 12 μg/m3. While not enough time has passed to assess how lowering 

the cap affected dementia rates via lower exposure over the subsequent decade, we 

can investigate whether PM2.5’s effects on dementia would diminish at lower levels 

of exposure. We do so by repeating estimation of 2SLS models after interacting our 
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measure of annual average decadal exposure with dummies for whether exposures 

exceeded the 1997 threshold (above 15 μg/m3), fell between the 1997 and 2012 

thresholds (12 to 15 μg/m3), or fell below the 2012 threshold (12 μg/m3). We use 

the instruments defined by interacting county attainment status with nearest moni-

tor attainment (Table IV, column 2) to separately identify PM2.5’s effects over each 

range of exposure.  

FIGURE IX: EFFECTS OF PM2.5 ON DEMENTIA BY LEVELS OF EXPOSURE 

 
Note: Asterisks indicate statistical significance at the 1% level based on robust standard errors clustered by Census block 
group. 

 

The results in Figure IX indicate that the marginal effects of PM2.5 on dementia 

are weakly decreasing in PM2.5 concentrations. This is consistent with prior evi-

dence that PM2.5 has larger marginal effects on mortality at lower concentrations in 

general (Pope et al. 2015, Li et al. 2019) and at concentrations below 12 μg/m3 

specifically (Di et al. 2017). While confidence intervals are too wide to conclu-

sively determine that marginal effects are larger at lower exposure levels, they also 

show that our estimated positive effects are unlikely to be due to sampling error if 

the effects do not exist among the populations within each exposure range. These 
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findings indicate that the 2012 policy change is likely to continue to improve health 

by reducing dementia, as would further reductions of the threshold.  

VIII. Discussion and Conclusions 

Our findings provide the first large-scale, nationwide evidence to support the 

hypothesis from medical research that long-term exposure to fine-particulate air 

pollution increases the individual risk of dementia among older adults. We find that 

the effects are driven by Alzheimer’s disease rather than by vascular dementia re-

sulting from strokes triggered by short-term pollution spikes. Furthermore, our re-

sults show that PM2.5’s effect on dementia is driven by cumulative exposure and 

that this effect is not explained by selection on mortality, sorting between traditional 

Medicare and Medicare Advantage, residential sorting based on anticipating future 

pollution changes, or other forms of Tiebout sorting based on unobserved health, 

income, and preferences for neighborhood amenities (Banzhaf and Walsh 2008, 

Bayer, Ferreira and McMillan 2007, Bayer, Keohane and Timmins 2009, Kahn and 

Walsh 2015).  

Dementia’s global social costs continue to grow with the aging of populations 

in many countries, causing the World Health Organization to label it a “public 

health priority” and the US Centers for Disease Control to describe it as a “public 

health crisis.” Because no medical preventions or cures exist, policy discussions 

have focused on investment in research and health infrastructure and modifying 

behaviors related to smoking, diet and exercise (World Health Organization 2012, 

US Centers for Disease Control and Prevention 2018). Our findings reveal another 

lever available to policy makers. We show that EPA regulation of PM2.5 during the 

2000s lowered dementia rates in the United States and that further regulation would 

be likely to yield additional health benefits. Our estimates for the monetary benefits 

of cases avoided ($214 billion) are sufficiently large to suggest that dementia-re-

lated benefits may matter for future benefit-cost analyses of air quality regulations.  
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SUPPLEMENTAL APPENDIX A: ADDITIONAL TABLES AND FIGURES 

 

 

FIGURE A1: ASSOCIATION BETWEEN PM2.5 AND DEMENTIA AMONG MEDICARE ENROLLEES, 2013 

 
Note: Each data point represents the fraction of individuals living in a state who had been diagnosed with dementia prior to the end of 2013 plot-
ted against their average decadal exposure to PM2.5 based on place of residence. The figures are conditional on integer age: 75 (upper left), 80 
(upper right), 85 (lower left) and 90 (lower right). Each figure also shows linear regression equations and correlation coefficients. The figures are 
based on dementia diagnoses observed for all enrollees in traditional Medicare in 2013. 
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FIGURE A1 (CONTINUED):  
ASSOCIATION BETWEEN PM2.5 AND DEMENTIA IN MAIN ESTIMATION SAMPLE, 2013 

 
Note: The figure is the same as the prior figure, except that it is constructed using only the people included in our main estimation sample. Differ-
ences between Figures A1 and A2 are mainly due to dropping people living in counties without pollution monitors. 

  



 

A4 
 

FIGURE A2: AIR POLLUTION TRENDS: UNBALANCED AND BALANCED MONITOR PANELS 

 

The bottom figure is identical to Figure II. It displays air pollution trends based on a balanced 

panel of monitors in operation continuously from 2001-2013. For comparison, the top figure is 

based on averages taken each year over an unbalanced panel of operating monitors. 
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TABLE A1: SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLES  

 

Note: Column (1) describes the sample used in our main longitudinal models. It is a balanced panel of people who were in traditional Medicare 
(TM) in 2004 and survived to 2013, at which point they were still enrolled in TM. Column (2) describes the full estimation sample used in models 
that include people who were in TM in 2004 but died or switched to Medicare Advantage (MA) before 2013. Column (3) describes people who 
were in TM in 2004 but not used in estimation because they lived in counties that were designated by EPA as “unclassifiable” for regulatory 
purposes due to a lack of pollution monitors. Column (4) describes people not used in estimation because they were enrolled in MA in 2004, leaving 
us unable to observe their dementia diagnoses and medical expenditures. Column (5) describes people who were in TM in 2004 but not used in 
estimation (aside from placebo regressions) because they had been diagnosed with dementia by 2004. Column (6) describes people who were in 
TM in 2004 but not use din estimation because they were missing data on medical expenditures, their residential address could not be matched to 
a Census block group, or they changed addresses in 2004 complicating assignment to a block group and attainment/nonattainment area. 

(1) (2) (3) (4) (5) (6)

EXCLUDED EXCLUDED EXCLUDED EXCLUDED

lived in county 

without 

pollution 

monitors

enrolled in 

Medicare 

Advantage in 

2004

had dementia in 

2004

missing data or 

moved in 2004

# people 1,257,232 2,384,195 2,695,762 772,071 339,539 418,067

Individual demographics

mean age at sample entry 69.5 71.1 71.3 71.3 77.3 69.2

mean age in 2013 82.8 84.5 84.7 84.8 91.2 82.0

male (%) 38 41 43 41 32 48

white (%) 83 83 87 75 80 77

black (%) 8 9 6 10 11 10

asian (%) 3 3 1 4 2 4

hispanic (%) 5 5 6 10 6 8

alive at beginning of 2013 (%) 100 65 60 64 20 74

ever moved (%) 31 31 36 36 52 67

ever moved county (%) 17 16 21 20 29 51

ever moved state (%) 10 10 15 12 19 37

2013 gross Medicare expenditures ($) 4,838 6,726 7,101  16,265

Medical diagnoses as of 2004

dementia (%) 0 0 10  100

stroke (%) 7 10 11  34

congestive heart failure (%) 13 21 21  45

diabetes (%) 22 25 23  34

ischemic heart disease (%) 36 42 37  61

hypertension (%) 67 70 63  84

Neighborhood characteristics

PM2.5 (hourly μg/m3) 2001-2003 13.24 13.29 12.86 13.57 13.39

Nonattainment county (%) 39.99 39.50  42.32 42.25

household income (median) 65,387 62,041 52,738 60,424 59,800

income per capita 33,498 31,822 26,815 29,954 31,095

year built (median) 1970 1969 1973 1967 1968

house value (median) 265,944 246,780 170,730 278,731 244,764

house value (average) 136,748 124,553 88,543 132,277 119,108

gross rent (median) 2,807 2,546 1,723 2,281 2,361

population over 65 (%) 18 18 19 18 19

population white not hispanic (%) 68 67 83 58 64

population black (%) 12 13 7 12 15

population hispanic (%) 13 13 7 21 14

education: 9th to 12th (%) 7 8 9 8 8

education: high school grad (%) 27 27 34 27 27

education: some college (%) 21 21 21 21 21

education: associate degree (%) 8 8 8 8 7

education: bachelor's degree (%) 20 19 15 18 19

education: graduate degree (%) 13 12 9 11 12

owner occupied (%) 64 62 64 60 58

renter occupied (%) 27 28 23 31 32

Main estimation 

sample: 2004 - 

2013 survivors

Full estimation 

sample: 

traditional 

Medicare 

enrollees in 

2004
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FIGURE A3: LOCATIONS OF EPA MONITORING STATIONS FOR FINE PARTICULATE MATTER 

 
The map shows the locations of air quality monitors for particulate matter smaller than 2.5 

microns in diameter (PM2.5). The maps was generated using the Environmental Protection 

Agency’s AirData Air Quality Monitor app: https://www.epa.gov/outdoor-air-quality-data/inter-

active-map-air-quality-monitors  

 

 
 

 

  

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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FIGURE A4: WITHIN-CBSA VARIATION IN NONATTAINMENT STATUS BY BASELINE PM2.5 LEVELS 

  

The figures provide examples of within-county and between-county variation in nonattainment 

status conditional on baseline residential PM2.5 concentrations from 2001-2003 in two CBSAs. The 

vertical axes report the fractions of people in 0.33 microgram per cubic meter bins describing 

baseline PM2.5 concentrations for residential areas in specific nonattainment and attainment coun-

ties at the time nonattainment designations were made. For example, the bottom figure shows that 

about 45% of people living in Union county, New Jersey in 2004 were living in neighborhoods 
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that had baseline concentrations between 13.0 and 13.3 micrograms per cubic meter. The corre-

sponding fraction in Ocean county, New Jersey was about 15%. Both counties are part of the New 

York – Northern New Jersey – Long Island CBSA but differed in their regulatory designations. 

Union county contains monitors above and below the regulatory threshold whereas all of Ocean 

county’s monitors were below the threshold.  

The top figure compares two adjacent counties in the Chicago – Naperville – Joliet CBSA. 

While Lake county’s monitors were below the regulatory threshold it was designated as a nonat-

tainment county. This illustrates the fact that the EPA designated counties as nonattainment if they 

were believed to contribute to violations in other nearby counties due to spatial dispersion of emis-

sions.  
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TABLE A2.A: SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

PM2.5 (1 μg/m3) (Decadal, 2004-2013) 1.679 0.490 0.717 2.640

Chronic conditions in 2004     

H 0.769 0.094 0.586 0.953

S 8.018 0.571 6.899 9.138

S, H 9.130 0.344 8.455 9.805

D 3.291 0.266 2.771 3.812

D, H 3.592 0.149 3.300 3.884

D, S 14.072 1.857 10.433 17.711

D, S, H 13.438 0.607 12.248 14.629

I 2.101 0.183 1.743 2.459

I, H 2.598 0.124 2.356 2.840

I, S 9.854 0.832 8.223 11.485

I, S, H 11.059 0.338 10.396 11.722

I, D 4.653 0.460 3.752 5.553

I, D, H 5.591 0.175 5.247 5.935

I, D, S 8.609 1.967 4.754 12.464

I, D, S, H 14.605 0.483 13.658 15.552

C 4.293 0.596 3.124 5.462

C, H 4.232 0.314 3.616 4.848

C, S 9.136 2.702 3.841 14.432

C, S, H 12.714 1.027 10.701 14.726

C, D 8.217 1.544 5.191 11.244

C, D, H 8.289 0.460 7.388 9.191

C, D, S 18.205 6.093 6.262 30.147

C, D, S, H 18.227 1.414 15.456 20.999

C, I 4.079 0.521 3.057 5.100

C, I, H 5.383 0.205 4.981 5.785

C, I, S 9.891 1.780 6.402 13.381

C, I, S, H 13.613 0.485 12.663 14.563

C, I, D 7.987 1.097 5.837 10.136

C, I, D, H 9.245 0.243 8.769 9.721

C, I, D, S 20.333 3.847 12.792 27.874

C, I, D, S, H 20.552 0.525 19.523 21.580

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The excluded reference category for age is 75. 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 3.859 0.119 3.625 4.092

expenditures2 -0.484 0.033 -0.548 -0.421

expenditures3 0.019 0.002 0.015 0.023

expenditures4 0.000 0.000 0.000 0.000

Age (females) 

76 0.751 0.180 0.398 1.104

77 1.689 0.188 1.321 2.057

78 2.907 0.194 2.526 3.288

79 4.307 0.202 3.911 4.704

80 6.025 0.214 5.606 6.444

81 7.152 0.216 6.729 7.576

82 8.838 0.227 8.393 9.283

83 11.253 0.233 10.797 11.710

84 12.696 0.242 12.222 13.170

85 15.244 0.252 14.751 15.737

86 17.625 0.262 17.112 18.138

87 19.841 0.277 19.299 20.384

88 22.560 0.290 21.992 23.127

89 25.081 0.305 24.483 25.679

90 27.224 0.330 26.576 27.871

91 29.571 0.355 28.875 30.267

92 31.013 0.375 30.278 31.747

93 33.346 0.418 32.528 34.165

94 36.313 0.481 35.370 37.256

95 38.380 0.530 37.342 39.419

96 40.681 0.611 39.484 41.878

97 42.037 0.709 40.647 43.427

98 43.329 0.822 41.717 44.940

99 47.367 0.918 45.568 49.167

100 and over 46.058 0.687 44.712 47.403

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The excluded reference category for age is 75. 

  

coefficient

Robust 

standard 

error

male -0.837 0.186 -1.201 -0.473

Age (males)

76 -0.063 0.270 -0.592 0.466

77 -0.245 0.281 -0.795 0.305

78 -0.557 0.292 -1.130 0.016

79 -0.869 0.304 -1.464 -0.273

80 -1.310 0.322 -1.941 -0.678

81 -1.495 0.327 -2.136 -0.854

82 -1.469 0.343 -2.142 -0.796

83 -2.247 0.355 -2.942 -1.552

84 -1.912 0.373 -2.643 -1.181

85 -2.530 0.394 -3.303 -1.758

86 -2.604 0.413 -3.413 -1.794

87 -3.697 0.440 -4.560 -2.833

88 -3.976 0.470 -4.897 -3.055

89 -4.283 0.501 -5.265 -3.302

90 -4.555 0.550 -5.633 -3.476

91 -5.861 0.593 -7.023 -4.700

92 -4.591 0.651 -5.867 -3.314

93 -5.226 0.738 -6.671 -3.780

94 -6.498 0.869 -8.200 -4.796

95 -7.181 0.998 -9.137 -5.225

96 -7.097 1.179 -9.409 -4.786

97 -6.282 1.446 -9.115 -3.448

98 -7.976 1.731 -11.370 -4.583

99 -11.812 2.136 -15.999 -7.625

100 and over -9.463 1.653 -12.703 -6.224

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

 
Note: The excluded reference categories are “other” for race, “% with 8th grade or less” for block group education attainment, and “% vacant” for 
block group housing stock. 

 

 

coefficient

Robust 

standard 

error

White 0.803 0.353 0.110 1.495

Black 3.718 0.392 2.951 4.486

Asian 0.517 0.410 -0.287 1.321

Hispanic 3.432 0.394 2.660 4.204

2004 Census Block Group Demographics

median household income / 1000 -0.004 0.003 -0.009 0.001

per capita income / 1000 -0.010 0.004 -0.018 -0.001

median year built 0.002 0.003 -0.003 0.007

median house value / 1000 -0.002 0.000 -0.003 -0.002

average house value / 1000 0.000 0.000 0.000 0.000

median gross rent / 1000 0.020 0.007 0.007 0.034

% over 65 0.235 0.382 -0.513 0.982

% white 1.185 0.438 0.327 2.043

% black 2.434 0.484 1.485 3.383

% hispanic 1.057 0.506 0.065 2.050

% 9th through 12th -0.158 1.185 -2.480 2.164

% high school graduate -3.933 0.903 -5.703 -2.163

% some college -5.971 0.899 -7.733 -4.209

% associate degree -7.511 1.134 -9.733 -5.289

% bachelor's degree -5.759 0.907 -7.536 -3.982

% graduate degree -5.284 0.960 -7.165 -3.403

% owner occupied -2.484 0.414 -3.295 -1.673

% renter occupied 1.908 0.462 1.002 2.814

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure -1.853 1.697 -5.179 1.474

exposure2 0.156 0.185 -0.206 0.518

exposure3 -0.010 0.009 -0.026 0.007

exposure4 0.000 0.000 0.000 0.000

95% Confidence Interval
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TABLE A2.B: FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

Chronic conditions in 2004     

H -0.0024 0.0008 -0.0040 -0.0007

S 0.0010 0.0048 -0.0085 0.0104

S, H 0.0006 0.0024 -0.0042 0.0054

D -0.0051 0.0024 -0.0099 -0.0004

D, H -0.0048 0.0012 -0.0071 -0.0024

D, S -0.0033 0.0121 -0.0270 0.0203

D, S, H -0.0007 0.0042 -0.0089 0.0074

I -0.0022 0.0017 -0.0055 0.0011

I, H -0.0026 0.0011 -0.0047 -0.0005

I, S -0.0059 0.0065 -0.0187 0.0069

I, S, H -0.0017 0.0024 -0.0065 0.0031

I, D -0.0042 0.0038 -0.0116 0.0033

I, D, H -0.0055 0.0014 -0.0083 -0.0027

I, D, S -0.0246 0.0162 -0.0564 0.0071

I, D, S, H -0.0026 0.0036 -0.0096 0.0044

C -0.0012 0.0046 -0.0103 0.0079

C, H -0.0031 0.0026 -0.0082 0.0019

C, S -0.0401 0.0231 -0.0853 0.0052

C, S, H -0.0095 0.0075 -0.0241 0.0052

C, D -0.0041 0.0126 -0.0289 0.0206

C, D, H -0.0011 0.0035 -0.0080 0.0058

C, D, S -0.0321 0.0329 -0.0966 0.0324

C, D, S, H -0.0016 0.0114 -0.0238 0.0207

C, I 0.0059 0.0042 -0.0024 0.0141

C, I, H 0.0011 0.0017 -0.0022 0.0044

C, I, S -0.0029 0.0139 -0.0301 0.0243

C, I, S, H -0.0026 0.0038 -0.0101 0.0048

C, I, D 0.0050 0.0088 -0.0121 0.0222

C, I, D, H -0.0002 0.0019 -0.0040 0.0035

C, I, D, S 0.0273 0.0326 -0.0367 0.0913

C, I, D, S, H -0.0007 0.0041 -0.0086 0.0073

95% Confidence Interval
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TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The excluded reference category for age is 75. 

 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 0.0001 0.0009 -0.0017 0.0019

expenditures2 -0.0001 0.0002 -0.0006 0.0004

expenditures3 0.0000 0.0000 0.0000 0.0000

expenditures4 0.0000 0.0000 0.0000 0.0000

Age (females)

76 0.0032 0.0020 -0.0008 0.0072

77 0.0023 0.0021 -0.0018 0.0063

78 0.0019 0.0020 -0.0020 0.0059

79 0.0009 0.0021 -0.0032 0.0051

80 0.0038 0.0021 -0.0004 0.0079

81 0.0026 0.0021 -0.0015 0.0066

82 0.0054 0.0021 0.0012 0.0095

83 0.0046 0.0021 0.0004 0.0087

84 0.0039 0.0022 -0.0003 0.0081

85 0.0046 0.0022 0.0003 0.0089

86 0.0054 0.0022 0.0010 0.0098

87 0.0050 0.0023 0.0004 0.0095

88 0.0057 0.0023 0.0011 0.0103

89 0.0075 0.0025 0.0027 0.0123

90 0.0048 0.0026 -0.0002 0.0099

91 0.0052 0.0027 -0.0001 0.0106

92 0.0084 0.0029 0.0027 0.0141

93 0.0042 0.0033 -0.0022 0.0106

94 0.0029 0.0037 -0.0043 0.0101

95 0.0052 0.0040 -0.0025 0.0129

96 0.0028 0.0044 -0.0058 0.0114

97 0.0037 0.0053 -0.0067 0.0140

98 0.0130 0.0059 0.0014 0.0246

99 0.0035 0.0071 -0.0104 0.0175

100 and over 0.0000 0.0053 -0.0103 0.0103

95% Confidence Interval
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TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 
Note: The excluded reference category for age is 75. 

  

coefficient

Robust 

standard 

error

male 0.0026 0.0023 -0.0018 0.0070

Age (males)

76 -0.0024 0.0032 -0.0086 0.0037

77 -0.0015 0.0032 -0.0078 0.0047

78 -0.0021 0.0032 -0.0084 0.0041

79 -0.0032 0.0033 -0.0095 0.0032

80 -0.0015 0.0033 -0.0079 0.0049

81 -0.0009 0.0032 -0.0071 0.0054

82 -0.0040 0.0033 -0.0104 0.0024

83 -0.0029 0.0033 -0.0094 0.0036

84 -0.0055 0.0033 -0.0120 0.0010

85 -0.0027 0.0034 -0.0094 0.0040

86 -0.0039 0.0034 -0.0106 0.0029

87 -0.0072 0.0037 -0.0144 0.0000

88 -0.0023 0.0038 -0.0097 0.0051

89 -0.0033 0.0040 -0.0111 0.0045

90 -0.0033 0.0042 -0.0115 0.0049

91 -0.0053 0.0045 -0.0142 0.0036

92 -0.0052 0.0048 -0.0147 0.0042

93 0.0014 0.0054 -0.0092 0.0119

94 0.0067 0.0066 -0.0063 0.0197

95 0.0030 0.0074 -0.0115 0.0176

96 0.0001 0.0086 -0.0167 0.0168

97 -0.0048 0.0100 -0.0244 0.0148

98 -0.0097 0.0133 -0.0358 0.0163

99 -0.0193 0.0154 -0.0495 0.0108

100 and over 0.0075 0.0115 -0.0150 0.0301

95% Confidence Interval
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TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

 
Note: The excluded reference categories are “other” for race, “% with 8th grade or less” for block group education attainment, and “% vacant” for 
block group housing stock.  

coefficient

Robust 

standard 

error

White -0.0094 0.0038 -0.0168 -0.0021

Black 0.0000 0.0041 -0.0081 0.0080

Asian 0.0108 0.0051 0.0008 0.0208

Hispanic 0.0183 0.0043 0.0098 0.0269

2004 Census Block Group Demographics

median household income / 1000 -0.0005 0.0001 -0.0006 -0.0004

per capita income / 1000 0.0018 0.0001 0.0015 0.0020

median year built -0.0002 0.0001 -0.0003 -0.0001

median house value / 1000 -0.0001 0.0000 -0.0002 -0.0001

average house value / 1000 0.0000 0.0000 0.0000 0.0000

median gross rent / 1000 -0.0001 0.0002 -0.0005 0.0002

% over 65 0.0800 0.0115 0.0574 0.1025

% white 0.0587 0.0118 0.0355 0.0819

% black 0.0907 0.0134 0.0645 0.1169

% hispanic -0.1238 0.0252 -0.1731 -0.0744

% 9th through 12th -0.0886 0.0209 -0.1294 -0.0477

% high school graduate -0.1383 0.0211 -0.1796 -0.0969

% some college -0.2163 0.0254 -0.2661 -0.1664

% associate degree -0.0631 0.0209 -0.1041 -0.0221

% bachelor's degree -0.0472 0.0227 -0.0917 -0.0027

% graduate degree -0.0447 0.0093 -0.0629 -0.0265

% owner occupied 0.0045 0.0104 -0.0159 0.0248

% renter occupied 0.0000 0.0000 0.0000 0.0000

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure 0.9679 0.1504 0.6732 1.2627

exposure2 -0.0862 0.0200 -0.1255 -0.0469

exposure3 0.0068 0.0011 0.0045 0.0090

exposure4 -0.0002 0.0000 -0.0002 -0.0001

Nonattainment * PM2.5 (1 μg/m3) (2001-2003)     

Nonattainment -23.5482 1.3850 -26.2627 -20.8337

Nonattainment * exposure 4.9770 0.3495 4.2920 5.6619

Nonattainment * exposure2 -0.3615 0.0343 -0.4286 -0.2943

Nonattainment * exposure3 0.0094 0.0016 0.0063 0.0125

Nonattainment * exposure4 0.0000 0.0000 -0.0001 0.0000

95% Confidence Interval
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TABLE A3—DECADAL EXPOSURE TO PM2.5 AND MORTALITY IN 2013 

 
Note: The dependent variable equals 100 if an individual died before the end of 2013. Col (1) is a univariate OLS regression with CBSA-specific 
intercepts. Col (2) adds all covariates for baseline health in 2004, individual demographics, demographics for the person’s Census block group, and 
pre-regulatory PM2.5 levels at their residence from 2001-2003. Cols (3) and (4) are the 2SLS analogues to Cols (1) and (2), respectively. Asterisks 
indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group.  

The table shows results from repeating estimation of the model in Table I using mortality as 

the outcome. The main specification in column (4) implies that a 1 g/m3 increase in average PM2.5 

exposure from 2004 through 2013 increased the probability of a death by the end of 2013 by 2.37 

percentage points. This is six times larger than the comparable OLS specification in column (2). 

The OLS model in (2) yields an estimate that is about half the size of the estimate reported by Di 

et al. (2017) based on hazard function estimation using CMS data on the Medicare population from 

2000 to 2012. 

 (1) (2) (3) (4)

0.537*** 0.365*** 0.734*** 2.369***

(0.06) (0.09) (0.09) (0.45)

individual & neighborhood covariates  x  x

specification OLS OLS 2SLS 2SLS

number of individuals 2,384,195 2,384,195 2,384,195 2,384,195

share who survive through 2013 60.5 60.5 60.5 60.5

decadal PM2.5 (1 μg/m3)
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TABLE A4—COEFFICIENTS ON CANCER INSTRUMENTS IN THE SURVIVAL REGRESSION 

 
Note: The dependent variable equals 100 if an individual survived through the end of 2013. Asterisks indicate statistical significance at the 10% 
(*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group.  

The table shows coefficients on the instruments from the survival regression. The dependent 

variable is scaled to enable the coefficients to be interpreted as percentage point changes in the 

probability of survival. 

  

 

-3.66***

(0.14)

0.11

(0.14)

-3.37***

(0.17)

-5.03***

(0.37)

-11.94***

(0.25)

number of individuals 2,384,195

share who survive through 2013 61

Breast cancer in 2004

Prostate cancer in 2004

Colorectal cancer in 2004

Endometrial cancer in 2004

Leukemia/Lymphoma in 2004
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FIGURE A5: PARTIAL EFFECT OF COUNTY-BY-MONITOR NONATTAINMENT ON PM2.5 EXPOSURE 

 
The figure reports conditional variation in decadal PM2.5 exposures that arises from nonattain-

ment status of the air quality monitor closest to the individual’s residence, conditional on county 

nonattainment designation. Each solid line is constructed by using our first-stage coefficients on 

the excluded instruments to predict how nonattainment designations affected average decadal ex-

posure conditional on baseline exposure. The excluded instruments consist of a 4th order polyno-

mial function of baseline exposure interacted with nonattainment indicators for the county and 

nearest monitor, which may or may not be in the same county. In the legend, “A” and “NA” denote 

attainment and nonattainment. The dotted lines represent 96% confidence bands based on 1,000 

bootstrap replications, with clustering by Census block group. 
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FIGURE A6: ANNUAL AVERAGE CHANGES IN PM2.5 BY AGE, MIGRATORY STATUS, AND DEMENTIA 

  

The solid trend line shows that movers with dementia tend to experience relatively larger year-

to-year reductions in their PM2.5 exposures as a result of moving, compared to non-movers of the 

same age (who may or may not have dementia). The dashed lines are 95% confidence bands on 

our estimates for the differentials. More specifically, the figure is constructed from a vector of 

coefficients, 𝜒, estimated by regressing the year-to-year changes in individuals’ PM2.5 exposures 

on indicators for integer age and interactions between indicators for (i) integer age, (ii) whether 

the person has dementia, and (iii) whether the year-to-year change in PM2.5 exposure straddled a 

move.  

∆𝑃𝑀25𝑖𝑡 = 𝑃𝑀2.5𝑖,𝑡 − 𝑃𝑀2.5𝑖,𝑡−1 = 𝜚 + 𝜍{𝑎𝑔𝑒𝑡} + 𝜒{𝑎𝑔𝑒𝑡}{𝑚𝑜𝑣𝑒𝑡}{𝑑𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝑡} + 𝜗𝑖. 

Like our main econometric models, all individuals age 100 and over are grouped into a single 

age bin at 100. Since the model includes 9 observations per person and the errors may exhibit au-

tocorrelation the confidence intervals are constructed from robust standard errors clustered at the 

individual level.    

  

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

69 72 75 78 81 84 87 90 93 96 99

∆P
M

2.
5 

fo
r 

m
o

ve
rs

 w
/d

em
en

ti
a 

(μ
g/

m
3 )

 

Age



 

A21 
 

 

FIGURE A7: SENSITIVITY OF CUMULATIVE EXPOSURE ESTIMATES TO SAMPLE COMPOSITION 

 

The figure on the left is the same as figure VII in the main text. It shows the estimated effect 

of a 1 g/m3 increase in average PM2.5 exposure from 2004 through the final year of exposure on 

the horizontal axis. The sample size decreases from 2.377 million people in 2005 to 1.257 million 

in 2013 due to death and transition to Medicare Advantage. The figure on the right is constructed 

by repeating the estimation using only the 1.257 million people who survived to 2013.  
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Supplemental Appendix B: Additional Background on Policy Calculations 
 

 
This appendix provides additional details regarding our estimate of the effect of dementia on 

people’s quality-adjusted life years (QALYs). Alzheimer’s disease and related dementias reduce 

QALYs through mortality and morbidity. We are unaware of any published estimates of the effects 

of dementia on life expectancy. To approximate this, we use the Medicare data to compare the 

average age at death of those who died with dementia against the average age at death of those 

who died without dementia. This yields a difference of 6.1 years (80.2 versus 86.3). Due to the 

health of the Medicare population even apart from dementia, each year of life lost does not repre-

sent a full QALY. Using estimates from Ara and Brazier (2011), we estimate that the average 

health state utility value (or “QALY weight”) among this population is 0.8. Together, these values 

imply that a dementia diagnosis on average leads to 4.88 QALYs lost due to mortality.  

To estimate the lost QALYs due to lower quality of life while living with dementia, we com-

bine the median QALY weights for mild, moderate and severe Alzheimer’s disease and related 

dementia from Kasai and Maguro (2013) with the transition rates between severity levels from 

Spackman et al. (2012). We rely on these prior estimates because we cannot directly observe de-

mentia severity with the Medicare data. We combine them with estimates from the Medicare data 

for the probability of survival to the end of each year following a dementia diagnosis. These esti-

mates are provided in the table below.  

From Spackman et al. (2012), among those who remain living with dementia, an estimated 

77% of mild cases transition each year to moderate, and 50% of moderate transition to severe. 

Kasai and Maguro (2013) estimated the health state utility value for each level to range from 0.52–

0.73 in mild cases, 0.30–0.53 in moderate cases, and 0.12–0.49 in severe cases. Combining the 

midpoints of these ranges with the transition rates and survival rates and again assuming a utility 

value of 0.8 apart from dementia yields an estimated loss of 1.0 QALY per dementia rate due to 

morbidity. This ranges from 0.6 QALYs using the high end of the health state utility value range 

to 1.5 using the low end. Combining this with the loss from mortality results in a central estimate 

of 5.9 QALYs lost per dementia case, with a range from 5.5 to 6.4 QALYs. 

We use a range of estimates for the value of a statistical life year, from $100,000 to $300,000, 

with a central estimate of $200,000. The lower bound is a common benchmark, the upper bound 
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is from Aldy and Viscusi (2007). Previously, Hirth et al. (2000) found a wide range of estimates, 

with the central estimates between $114,000 and $196,000 in 2018 dollars. 

TABLE B1—MORTALITY RATES BY YEARS SINCE DEMENTIA DIAGNOSIS 
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Years since Dementia 

Diagnosis

Percent 

Dying

Cumulative 

Percent Dead

0 23.38 23.38

1 19.89 43.28

2 14.17 57.45

3 11.32 68.76

4 8.82 77.58

5 6.72 84.3

6 5.02 89.32

7 3.58 92.9

8 2.57 95.46

9 1.77 97.24

10 1.17 98.4

11 0.76 99.17

12 0.46 99.63

13 0.25 99.89

14 0.11 100




