Lessons Learned in California Climate Policy

Carol Zabin

Green Economy Program

Center for Labor Research and Education

University of California, Berkeley

May 17, 2017

Summary of research on California climate policies

- Nearly all research studies show small net job growth, with stimulation of some sectors especially renewables and EE, and sectors that reeive investment from our cap and invest revenue funds.
- Positive economic impact is due to higher job creation in non-fossil fuel sectors compared to fossil fuels, stimulating up front investments that pay off over time- (EE, EVs), and local production vs. imports of fossil fuels.
- Possible contractions in high GHG emitting sectors, which can be managed with intentional policy to invest in abatement and avoid leakage, and back-stop with robust transition assistance.

California emissions targets to 2020: net impacts to date

- Cap and trade revenues generated \$3.4 billion in state investment
- 33% Renewables Portfolio Standard
 - Between 2002-15, about 11, 200 MWs of new renewable capacity was built
 - This created about 33,000 direct job years and 86,000 total jobs

Source: Jones et al, Link-Between-Good-Jobs-and-a-Low-Carbon-Future, Center for Labor Research and Education, University of California, Berkeley, 2016

Renewable Energy MW Installed and Construction Jobs Created, 2002–15

Type of Renewable Energy	New In-State MW Capacity Built	Total Construction Job-Years	Blue-Collar Construction Job-Years	White-Collar Job-Years per MW	Blue-Collar Job-Years per MW
Photovoltaic (PV)	5,575	21,724	16,945	0.9	3.0
Large Commercial (0.25–1MW)	15	88	69	1.3	4.5
Community Scale (1–5 MW)	618	2,405	1,876	0.9	3.0
Utility (>5MW)	4,942	19,231	15,000	0.9	3.0
Concentrated Solar Power	897	6,014	4,691	1.5	5.2
Land-Based Wind Power	4,226	2,754	2,148	0.1	0.5
Geothermal	105	457	357	1.0	3.4
Small Hydro	48	341	266	1.6	5.5
Biomass (+Biogas)	381	1,346	1,050	0.8	2.8
Battery Storage	2	NA	NA	NA	NA
Total Renewable*	11,234	32,636	25,456	0.6	2.3

*May not sum or multiply due to rounding

Source: Carol Zabin et al, The Link Between Good Jobs and a Low Carbon Future, University of California, Berkeley, 2016

Energy efficiency is key element

- IOUs administer most EE programs under CPUC oversight, over \$1 billion/year
- 6 direct jobs and 14 total jobs created per \$1 million investment
- Workforce training is crucial: to ensure equipment and buildings improvements are installed and maintained correctly
- Training infrastructure includes state-certified apprenticeship system and community colleges

Source: Proposition 39 Jobs Report 2014-2016, Carol Zabin and Kevin Duncan, 2017 University of California, Berkeley.

Case study: San Joaquin Valley

- Net benefit to rural, less prosperous regions: in eight-county San Joaquin Valley 2013-15, net creation of over 700 direct jobs, \$202 million in total net economic impact, including \$4.7 million in state and local tax revenue.
- Including revenue that has been allocated thru 2015 but not yet expended, total 2013-15 would be: 7,412 jobs, \$1.5 billion economic impact, \$45.3 million state-local tax revenue.
- Sectors that gained: construction; consumer savings from reduced energy use.

Source: Betony Jones et al, The Economic Impacts of California's Major Climate Programs on the San Joaquin Valley, Next 10, January 2017.

High road: Job quality, not just quantity

- Most utility-scale renewables projects provided familysupporting wages, and benefits including training, pension contributions, and family health care.
- Many projects provided apprenticeship and hired local residents from disadvantaged communities, lowincome households and veterans.
- Main beneficiaries of growth in renewables were highunemployment, low-income rural counties, such as our San Joaquin and Imperial Valleys.

Utility-scale solar = quality jobs

Craft	Training	Pension	Health	Total Benefits	Wage
Boilermaker	\$0.75	\$16.20	\$8.57	\$25.52	\$41.66
Bricklayer	\$0.82	\$7.37	\$7.90	\$16.09	\$40.56
Carpenter	\$0.57	\$4.41	\$6.60	\$11.58	\$40.40
Cement Mason	\$0.60	\$8.09	\$7.52	\$16.21	\$32.30
Electrical Utility Lineman	\$0.26	\$8.18	\$5.50	\$13.94	\$52.85
Electrician-Wireman	\$0.93	\$8.52	\$8.97	\$18.42	\$38.20
Insulators	\$0.64	\$11.51	\$8.14	\$20.29	\$37.99
Ironworker	\$0.72	\$12.97	\$9.42	\$23.11	\$33.50
Laborers	\$0.64	\$6.50	\$6.86	\$14.00	\$31.39
Millwright	\$0.57	\$4.41	\$6.60	\$11.58	\$40.90
Operating Engineer	\$0.80	\$9.65	\$11.20	\$21.65	\$31.39
Painter, Industrial	\$0.79	\$3.04	\$8.05	\$11.88	\$30.72
Pipefitter	\$2.55	\$11.05	\$7.11	\$20.71	\$42.93
Roofer	\$0.30	\$1.62	\$6.00	\$7.92	\$28.73
Sheet Metal	\$0.73	\$14.54	\$7.92	\$23.19	\$35.55
Teamster	\$1.52	\$5.00	\$16.02	\$22.54	\$28.24
Average weighted by share of work	\$0.91	\$8.59	\$8.63	\$18.13	\$36.84
Benefits as a percent of average wage	3%	23%	23%	49%	

Source: Carol Zabin et al, The Link Between Good Jobs and a Low Carbon Future, University of California, Berkeley, 2016

Exhibit 10

Comparison of wages and wage trajectories for rooftop solar installers and union electricians in California

Source: US Bureau of Labor Statistics and Construction Electrician/Construction Wireman Wage and Fringe Benefits, California Bay Area Region¹⁹

California's missed opportunity: community solar

- California has failed to take advantage of mid-scale projects, i.e. community solar, which can lower per MW cost and create better jobs.
- Oregon has an important opportunity with SB 1547, which mandates PUC to write rules for community solar by July 1.

Workforce training lessons learned in California for post-2020 period

- Incorporate contractor and workforce standards into program requirements for climate policies to help ensure well-paying jobs for workers and ensure quality workmanship.
- Where feasible, use community workforce agreements.
- Use existing training infrastructure, particularly certified apprenticeship programs.
- Create inclusion programs to create job pipelines for workers from minority, low-income and disadvantaged communities into apprenticeships.

CA climate policy to 2020 and beyond: broad stakeholder support

- Free allowances for electric utilities (not generators), industrial facilities and natural gas distributors
- Free allocation amount declines over time
- Investor-owned utilities must consign their free allowances to be sold at auction; must use proceeds for ratepayer benefit
- Major corporations support renewal of cap and trade

Impact on Native American tribes

- Tribes benefit because they can qualify for selling carbon offset credits under the Cap and Trade program.
- Seven tribes in California and other states, including Oregon's Warm Springs Confederated Tribes, have sold credits under the program to preserve forestland.

