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The widespread use of systemic neonicotinoid insecticides in agriculture results first in

contamination of the soil of the treated crops, and secondly in the transfer of residues

to the aquatic environment. The high toxicity of these insecticides to aquatic insects and

other arthropods has been recognized, but there is little awareness of the impacts these

chemicals have on aquatic environments and the ecosystem at large. Recent monitoring

studies in several countries, however, have revealed a world-wide contamination of

creeks, rivers and lakes with these insecticides, with residue levels in the low µg/L (ppb)

range. The current extent of aquatic contamination by neonicotinoids is reviewed first,

and the findings contrasted with the known acute and chronic toxicity of neonicotinoids

to various aquatic organisms. Impacts on populations and aquatic communities, mostly

using mesocosms, are reviewed next to identify the communities most at risk from those

that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial

organisms are considered. The consequences for terrestrial vertebrate species that

depend mainly on this food source are discussed together with impacts on ecosystem

function. Gaps in knowledge stem from difficulties in obtaining long-term experimental

data that relates the effects on individual organisms to impacts on populations and

ecosystems. The paper concludes with a summary of findings and the implications they

have for the larger ecosystem.
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INTRODUCTION

Neonicotinoids are a novel class of chemical insecticides derived from the natural toxin nicotine.
The first compound that was launched to the market in the early 1990s, imidacloprid, was hailed as
the solution to the environmental problems caused by older insecticides such as organochlorines
and organophosphates, e.g., spray drift onto non-target areas (Siebers et al., 2003), broad-spectrum
toxicity to most organisms (Brown, 1978), fish kills (Fox and Matthiessen, 1982), bioaccumulation
in fatty tissues (Matthiessen et al., 1982) and poisoning effects on the applicators (Cataño et al.,
2008), among others.

Because they are systemic, neonicotinoids are typically applied to the roots of the crop
plant, avoiding thus the need for spraying and contaminating nearby land by drift, although
they can also be applied as foliar sprays (Elbert et al., 2008). In addition, the selectivity of
neonicotinoids toward arthropods, and insects in particular, was an achievement only paralleled by
the pyrethroids (derived from the natural toxin pyrethrum). However, unlike the latter insecticides,
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neonicotinoids are not toxic to either fish or zooplankton
species, a great advantage for using them in environmental
programs. Thirdly, their hydrophilic properties avoided any
chance of bioaccumulation in organisms, and furthermore they
were harmless to mammals (Tomizawa and Casida, 2005). These
features provided safety to both environment and operators,
mainly farmers, and became the key selling points in marketing
(Jeschke and Nauen, 2008). Within a decade, imidacloprid
was the top selling insecticide in the world, having displaced
older chemistries (Jeschke et al., 2011). Newly developed
neonicotinoids followed suit, to the point that they now
constitute the largest group of insecticides in the global market
(Simon-Delso et al., 2015).

Their marketing success, however, was tarnished by their
association with honey bee failures in France (van der Sluijs
et al., 2013). Many people now have become aware of the
existence of neonicotinoids through reports in the media and the
internet about bee declines. Hundreds of research papers have
been written on this topic in recent years (Osborne, 2012), and
the evidence suggests that neonicotinoids impacts on bees and
other pollinators cannot be ignored (EFSA, 2013). Consequently,
authorities have started to impose measures in Europe to reduce
their use in crops that attract bees, like rapeseed (canola),
sunflower, and maize (European Commission, 2013), and some
countries (i.e., France and Germany) have recently banned the
use of seeds treated with neonicotinoids (Garric and Hir, 2016).

As the debate about neonicotinoids has been focused on
bees not many people are aware of their impacts on aquatic
ecosystems. Yet they pose threats to this environment (Sánchez-
Bayo, 2014), more subtle perhaps but broader in scope when we
analyse the consequences for the larger aquatic ecosystem.

This paper is a review of current knowledge about the toxicity
of neonicotinoids to aquatic species, starting with their effects at
the individual level, discussing their impacts on populations and
aquatic communities, and concluding with the consequences that
these impacts have on ecosystems. In addition, a meta-analysis of
the contamination of freshwater systems with neonicotinoids to
date adds a global perspective to the issues. There is urgency in
assessing the advantages and disadvantages of the widespread use
of this class of insecticides, so as not to repeat the mistakes of the
past (Krebs et al., 1999).

EFFECTS AT THE ORGANISMAL LEVEL

The first neonicotinoid launched to the market, imidacloprid,
had very low acute toxicity to the standard aquatic species
used in regulatory testing of chemicals. The 48-h median
lethal concentration (LC50) for the waterflea Daphnia magna
was between 10 and 85 mg/L (ppm), which is several
orders of magnitude higher than the LC50 of pyrethroids,
organophosphorus and carbamate insecticides to the same
species (Song et al., 1997; Tomlin, 2009). Similarly, the 96-
h LC50 for fish species were in the range 83–281 mg/L for
rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio)
(Ding et al., 2004; Tomlin, 2009). These data suggested that
neonicotinoids would not have major impacts, if any, on aquatic
ecosystems.

It was later found that other aquatic taxa were much more
sensitive to imidacloprid than the standard test species. Thus,
freshwater ostracods have 48-h LC50s in the range 185–719
µg/L (ppb), which are 50–120 times lower than that of D.
magna (Sánchez-Bayo and Goka, 2006b). Moreover, the LC50s
for the amphipod Hyalella azteca are between 115 and 7µg/L
(ppb) depending on whether the exposure is for 2 or 28
days, and for midge larvae (Chironomus tentants) LC50s are
in the range from 5 to 0.9 µg/L for the respective 4 and
28-day exposures (Stoughton et al., 2008). The latter values
are four orders of magnitude lower than those for D. magna,
indicating that somehow the initial toxicity assessment of this
insecticide was flawed. Survival of midge larvae (Chironomus
riparius) is also reduced in waters contaminated with mixtures
of neonicotinoids (imidacloprid, thiacloprid) and pyrethroid
insecticides (deltamethrin and esfenvalerate) (Kunce et al., 2015).

One particular aspect of neonicotinoids became apparent only
after years of testing: median toxicity values varied significantly
depending on the time of exposure. As mentioned above, the
estimated LC50s for amphipods and midge larvae were one
or two orders of magnitude lower for exposures of 28 days
compared to standard exposures of 2 or 4 days. This translates
in a large acute/chronic toxicity ratio, which for the mayfly
Cloeon dipterum is 800 times when exposed for 28 days to
imidacloprid (van den Brink et al., 2016). For the freshwater
ostracod Cypridopsis vidua, the difference in LC50 between 2-
and 5-day exposures is three orders of magnitude! (Sánchez-
Bayo, 2009). This trend toward lower LC50s with increasing
exposure time has been confirmed for several other species,
including D. magna, Gammarus amphipods, black fly larvae,
alderflies, mayfly and dragonfly nymphs (Beketov and Liess,
2008a; Roessink et al., 2013) when exposed to imidacloprid,
thiamethoxam or thiacloprid (Figure 1). The consequence is an
apparent “delayed mortality” (Beketov and Liess, 2008a), which
can be observed in mesocosm trials that use a single pulse
exposure: most of the organisms do not die immediately but
start dying in large numbers after a week, and their populations
disappear completely after a few weeks (Sánchez-Bayo and Goka,
2006a; Hayasaka et al., 2012a).

The physiological mechanism responsible for such unusual
toxicological response is based on the agonistic mode of
action of this class of chemicals, and was deduced by
Tennekes (2010a) based on the model of Druckrey and
Küpfmüller (1949). Neonicotinoids bind irreversibly to the
nicotinic acetylcholine receptors (nAChR) embedded in the
synaptic membranes of neurons, and their activation elicits a
continuous electric impulse that eventually leads to the death
of the neuron. The neuronal death toll accumulates as more
and more chemical molecules bind to other nAChRs until the
organism cannot cope with the damage and dies (Rondeau
et al., 2014). Although an antagonistic mode of action on
the same receptors has been reported for thiacloprid and
thiamethoxam in Lymnaea stagnalis snails (Vehovszky et al.,
2015), this inhibition of neurotransmission results in a similar
outcome.

Aquatic organisms are constantly being exposed to residues
of chemicals present in water, a medium from which they
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FIGURE 1 | Time-cumulative mortality of three aquatic species

exposed to neonicotinoids: mayfly Cloeon dipterum to thiacloprid

(green triangles), ostracod Cypridopsis vidua to imidacloprid (blue

diamonds) and amphipod Gammarus kischineffensis to thiamethoxam

(red squares). Data sources: mayfly (van den Brink et al., 2016); ostracod

(Sánchez-Bayo, 2009); amphipod (Uğurlu et al., 2015).

cannot escape. The time to reach the organism’s death threshold
depends on the internal concentration of insecticide, which in
turn depends on its external concentration and the kinetics and
detoxification ability of each species (Escher et al., 2011). The
latter explains the enormous differences in susceptibility to this
class of insecticides by various aquatic and terrestrial taxa, which
range several orders of magnitude among insects and crustaceans
alone (Morrissey et al., 2015).

The main difference between this mode of action and that of
other pesticides is that effects are cumulative with time, because
neurons do not regenerate. It has been termed time-cumulative
toxicity (Tennekes and Sánchez-Bayo, 2013) to distinguish it
from the more common toxicological response of insecticide
inhibitors (e.g., organophosphorus, pyrethroids), which may
bind irreversibly to specific receptors or enzymes but whose
effects are temporary and can be reversed once the target
receptors or enzymes are regenerated (Matsumura, 1985).

Aside from mortality, exposure to neonicotinoids causes a
number of sublethal effects on aquatic organisms, such as feeding
inhibition (Alexander et al., 2007; Kreutzweiser et al., 2007;
Nyman et al., 2013), impaired movement (Motobayashi et al.,
2012), reduced fecundity (Böttger et al., 2013), reduced body
size in mayflies (Alexander et al., 2008) and fish (Hayasaka
et al., 2012a) and immune-suppression in fish (Sánchez-Bayo
and Goka, 2005). Downstream drift also occurs probably as
an avoidance response to toxic conditions (Beketov and Liess,
2008b). All these effects were ignored for years, as the focus of
neonicotinoid research was on bees, not on aquatic organisms.
Obviously, some of these sublethal effects can be reversed if they
do not rely directly upon the nervous system.

IMPACTS AT THE POPULATION LEVEL

Measurements of acute toxicity such as LC50s are useful to
determine the potency of a chemical. Equally useful are the
estimations of lowest effect concentrations (LOECs) based on
observations of chronic exposure, although they are less accurate
and reliable. What matters is to protect the populations of as
many species as possible so as to maintain the integrity of the
aquatic ecosystem services. To achieve that goal, it is imperative
to know the range of sensitivities amongst species in different
taxonomic groups, so that an evaluation of risks can be made.
For aquatic species, toxicity data are scarce for all neonicotinoids
except for imidacloprid and, to a lesser extent, thiacloprid.
Therefore, assessments of risks and water quality thresholds
for neonicotinoids are currently based on the acute toxicity of
imidacloprid, mostly derived from short-term exposures of 2 or
4 days (Morrissey et al., 2015) and some chronic data (Smit et al.,
2015).

The ECOTOX database of the US Environmental Protection
Agency (EPA) provides LC50s of imidacloprid for 57 aquatic
species belonging to several taxonomic groups (9 classes in
4 phyla). Sensitivities span six orders of magnitude, from the
most susceptible mayflies (LC50 ∼ 1 ppb) to the most tolerant
fish (LC50 ∼ 650 ppm) (Figure 2). It is apparent that the most
susceptible species are aquatic insects, followed by crustaceans
such as amphipods, ostracods and shrimps, then tubicifid worms
and mussels. All cladoceran crustaceans (waterfleas) are very
tolerant except perhaps Ceriodaphnia dubia, which is as sensitive
as ostracods.Waterfleas are, therefore, not representative of other
invertebrate taxa for imidacloprid nor any other neonicotinoid
compound (Beketov and Liess, 2008a; Daam et al., 2013;
Hayasaka et al., 2013).

Species sensitivity distributions (SSD, Figure 2) have been
used by government agencies in some countries to derive water
quality thresholds that protect their aquatic environment. In
the Netherlands and other European countries the protective
level for short-term peak concentrations of imidacloprid is 0.2
µg/L, whereas for long-term exposures the threshold is 8.3 ng/L
(Smit et al., 2015). In the United States, the chronic invertebrate
Aquatic Life Benchmark is 1.05 µg/L, in Canada 0.23 µg/L
(CCME, 2007; Anderson et al., 2015) and in Sweden 13 ng/L
(Kreuger et al., 2010). Thresholds for other neonicotinoids
are about the same order of magnitude in the US, but most
countries have not established yet any regulation concerning
neonicotinoids, while many still base their ecological assessments
on the misleading toxicity data for Daphnia and fish.

The above regulatory thresholds are only a guide. Unlike with
previous pesticides, protective levels for neonicotinoids cannot
be achieved by setting a concentration benchmark because,
as already explained, the effects of neonicotinoids increase
with exposure time. An alternative is to assess the impact on
populations using the predicted affected fraction (PAF) of species,
which is determined by comparing waterborne residue levels
from monitoring surveys with the SSD. Data on water residues
for these compounds have been gathered in the past decade;
prior to 2005 only a few surveys found some imidacloprid in
a watershed and two streams of New York State (USGS, 2002;
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FIGURE 2 | Species sensitivity distribution (SSD) for acute toxicity of imidacloprid (LC50) to aquatic organisms. The hazard concentration affecting 5% of

species (HC5, µg/L) is indicated. Source: ECOTOX database https://cfpub.epa.gov/ecotox/.

Phillips and Bode, 2004) and in drains from potato fields in
Canada (Denning et al., 2004; CCME, 2007). A meta-analysis of
all residue data from 11 countries available to date (Table S1)
revealed the following:

(i) up to six neonicotinoids are currently present in water
bodies all over the world. Average concentrations were
similar for all compounds, ranging from 0.08 µg/L
(dinotefuran) to 0.73 µg/L (imidacloprid); the highest
concentrations detected so far were for imidacloprid and
thiamethoxam (320 and 225µg/L, respectively) (Figure 3).

(ii) average residue levels have increased over the past 15
years, with highest rates of increase for clothianidin and
thiamethoxam reflecting the worldwide trend in usage
of these two compounds (Simon-Delso et al., 2015;
Figure 4A).

(iii) the frequency of detection varies widely from country to
country, with 100% detections for some compounds in
several regions. On average neonicotinoid detections were
found in 13% (acetamiprid) to 57% (dinotefuran) of all
waters, and they also showed an increasing trend with
time; again, the highest increases were for clothianidin and
thiamethoxam (Figure 4B).

Contrasting these data with the protective levels established in
some countries, the average concentration of all neonicotinoids
in water exceeded the European guidelines 27% of the time, and

the Canadian and United States guidelines 66 and 79% of the
time, respectively, whereas maximum concentrations can exceed
the European guidelines 35% of the time (Morrissey et al., 2015).

These findings are of concern. The increasing trend in
detections is obviously due to two factors: (i) a major effort in
looking for these compounds in recent times, which contrasts
with the absence of data in previous years; and (ii) better
analytical capabilities, with current limits of detection around
1 ng/L or less using either HPLC (Sánchez-Bayo and Hyne,
2014) or LC-MS/MS instrumentation (Hladik and Calhoun,
2012; Yamamoto et al., 2012). However, the increasing residue
levels are of great concern, as they indicate that residues in soil,
where most of these insecticides are applied, are accumulating
over the years. Indeed, there is evidence that such accumulation
is happening in countries with a long history of using seeds
treated with imidacloprid (Jones et al., 2014; Douglas and Tooker,
2015), although residues of thiamethoxam or clothianidin may
plateau if crop rotation is used over a few years (Schaafsma
et al., 2016). This accumulation results primarily from the fact
that 80–90% of the insecticide in the coated-seeds and granules
remains in the soil at the end of the cropping season (Sur
and Stork, 2003; Goulson, 2013), and dissipation from soil
is slower than in water: half-lives of neonicotinoids in soil
are between 50 and 600 days for the four most commonly
used compounds (Bonmatin et al., 2015), whereas photolytic
hydrolysis in water can dissipate waterborne residues in a few
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FIGURE 3 | Worldwide survey of neonicotinoid residues in water. The number of surveys reporting each chemical is in brackets. Boxes contain the residues

between the first and third quartile; blue lines indicate the geometric mean; vertical lines show the outliers. Sources: see Table S1.

days (Phong et al., 2009; Thuyet et al., 2011). Degradation
in sediments is faster for newly developed compounds like
cycloxaprid (Liu et al., 2015). Up to 6% of imidacloprid residues
in soil can be transported in runoff after storm events (Thuyet
et al., 2012), but most of the residual chemical would remain
in the applied field, from where it moves readily into ground
waters, particularly thiamethoxam, imidacloprid, clothianidin
(González-Pradas et al., 2002; Miranda et al., 2011; Bajeer et al.,
2012) and dinotefuran (Kurwadkar et al., 2014). The increasing
use of products containing neonicotinoids and their repeated
application as coated seeds in agricultural fields (Douglas and
Tooker, 2015) adds every year a new layer of residues to the soil,
and hence to the waters, where residue levels are a reflection of
those present in soil at any time (Hladik et al., 2014; Schaafsma
et al., 2015).

By comparing the distribution of waterborne residues of
imidacloprid to its SSD, estimations of the PAF are made to
assess its current impact on aquatic organisms, i.e., the loss of
half the populations exposed (Figure 5). Surveys to date indicate
that up to 40% of species are being seriously affected in streams
of Maryland, where average residue levels are 5.4µg/L and
can reach 131 µg/L (Johnson and Pettis, 2014), and a similar
proportion in draining ditches from greenhouses in Sweden
(average 3.2 µg/L and highest 89 µg/L) (Kreuger et al., 2010). In
three agricultural valleys of California, imidacloprid is currently
affecting up to 11% of aquatic species (Starner and Goh, 2012),
and in the Sydney basin up to 14% of species are being affected
in streams that receive water from turf farms (Sánchez-Bayo and
Hyne, 2014). Only streams and estuaries contaminated mostly

with urban runoff, e.g., San Francisco (Weston et al., 2015),
have minimal number of species affected. One can expect similar
impacts for the other neonicotinoid residues, although it is not
possible to assess them at this stage so long as the data available
are insufficient.

This preliminary assessment is only based on the acute
toxicity data (Figure 2) as determined in laboratories. For
more realistic assessments of the long-term impacts, field
and mesocosm studies are required, as explained in the next
section.

IMPACTS ON AQUATIC COMMUNITIES

Some 22 studies on the impacts of neonicotinoids on aquatic
communities have been conducted to date. Most of them
comprise mesocosms that used imidacloprid, with five studies
using thiacloprid and one acetamiprid in addition to those
two compounds (Table S2). These studies were carried out
in Japan (rice mesocoms), Portugal (field trials), Canada, and
Germany (streams and microcosms). The most striking feature
of these studies is their consistency in reporting population
and community effects at levels well below the LC50s of the
aquatic species tested. This is unusual, since field or mesocosms
studies under realistic scenarios typically report fewer impacts
of pesticides and other toxicants than in closed laboratory
conditions (Cleveland et al., 2002). Reduced exposures, due
mainly to chemical losses by microbial degradation, hydrolysis
and other environmental factors, are usually responsible for the
lesser impacts under field conditions (Maund et al., 1997).
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FIGURE 4 | Temporal trends of (A) concentrations of neonicotinoids in

waters of the world, and (B) their frequency of detection. Sources: see

Table S1.

A reduced abundance in aquatic insects is apparent when
concentrations of imidacloprid in water are above 1 or 2µg/L
(Sánchez-Bayo and Goka, 2006a; Pestana et al., 2009; Hayasaka
et al., 2012a; Colombo et al., 2013). Population reductions in
the short-term are caused by direct toxicity, but in mesocosms
such reductions affect the structure of the macroinvertebrate
communities when residues are one or two orders of magnitude
lower than the LC50s for most species, as more tolerant taxa tend
to increase in numbers to fill the niche vacuum thus created in the
ecosystem. Some of these changes are predictable. For instance,
waterfleas increased in numbers when grazers such as ostracods
were eliminated in rice mesocosms treated with imidacloprid
(Sánchez-Bayo et al., 2007), whereas the disappearance of
chironomid larvae brought about increases in Radix sp. snails
(Colombo et al., 2013). In other cases, opportunistic predators
(e.g., Heteroptera, Coleoptera, Odonata) and scavengers (e.g.,
Amphipoda) that feed on the moribund insects or their corpses
have a temporary increase in food availability (Sánchez-Bayo and
Goka, 2006a). Interestingly, the negative impacts on predatory
copepod populations in rice fields are followed by upsurges of

mosquitoes but not of chironomids. Consequently, the overall
biodiversity of the aquatic communities is negatively affected
(Pestana et al., 2009). Similar impacts are observed in mesocosms
treated with thiacloprid at 3.2µg/L or above (Kattwinkel et al.,
2016). This is not surprising, as the HC5 for thiacloprid derived
from outdoor stream mesocosms is 0.72µg/L (Beketov et al.,
2008), the same as that calculated for imidacloprid (HC5 = 0.73
µg/L, Figure 2).

Treatments of rice mesocosms with imidacloprid at different
rates over 4 years in Japan resulted in community impacts that
were related to the initial concentrations of this insecticide in
water, from 240 to 40 µg/L. Average reductions of 46–62%
were recorded among the plankton, neuston, nekton or benthos
communities (Figure 6A), but the specific taxa groups and
species affected differed from 1 year to another (Sánchez-Bayo
et al., 2007; Hayasaka et al., 2012b). The greatest impacts (>45%
reductions) occurred in ostracods, mayflies and snails, followed
by chironomids, dragonflies, damselflies and some Hemiptera
predators such as Corixidae, Mesoveliidae and Anthocoris sp.
Emergence of dragonflies is also reduced by more than 80%
(Jinguji et al., 2013). By contrast, waterfleas increased by 75% and
Diptera larvae (excluding chironomids) by 15%. A similar trial in
a rice field in Portugal measured initial concentrations of 52µg/L
imidacloprid in water, and average weighted concentrations of
8 µg/L, which were estimated to affect 40–63% of the aquatic
species (Daam et al., 2013). These observations are consistent
with the impacts in Canadian stream mesocosms (Figure 6B),
where weekly imidacloprid pulses at 2 or 20 µg/L had the highest
reductions on worms (75%), caddisflies (70%), mayflies and
stoneflies (both 68%) (Pestana et al., 2009).

Moreover, many of these populations are decimated and their
recovery is either slow or, if there is competition with other
species, it does not take place (Liess et al., 2013). Recovery of most
populations only occurs when the neonicotinoid concentrations
in water or sediment are below 1 µg/L (Hayasaka et al., 2012b),
whereas many univoltine or semivoltine species do not recover
at all. Nor does the structure of the communities revert to the
original situation, because some species disappear while others
take over and increase in numbers (Beketov et al., 2008; Hayasaka
et al., 2012a). These impacts contrast with those caused by other
pesticides, which tend to produce a large initial mortality upon
target and non-target populations alike but allow the recovery of
the species affected within a few weeks (van den Brink et al., 1996;
Brock et al., 2010). Thus, aquatic communities of rice paddies
recovered completely in a week after foliar application of the
insecticide etofenprox took place (Sánchez-Bayo et al., 2007).
The reason for this difference lies in the delayed mortality after
chronic exposure to very low concentrations of neonicotinoids in
water or sediments and, for more tolerant species like Gammarus
roeseli, in their reduced fecundity under similar conditions
(Böttger et al., 2013). By contrast, many pyrethroids and
organophosphates (with the exception of persistent compounds
like chlorpyrifos) do not produce time-cumulative mortality
(Parsons and Surgeoner, 1991) since their exposure is limited in
time (Lahr et al., 2000; Medina et al., 2004).

Apart from the lethal effects on communities, blackfly
larvae (Simulium latigonium), mayfly nymphs (Baetis rhodani)
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FIGURE 5 | Distribution of waterborne residues of imidacloprid in several countries contrasted with the acute SSD for this compound. Data sources:

Australia (Sánchez-Bayo and Hyne, 2014); Sweden (Kreuger et al., 2010); USA California (Starner and Goh, 2012); USA Maryland (Johnson and Pettis, 2014); USA

San Francisco (Weston et al., 2015).

and amphipods (Gammarus pulex) drift downstream when
concentrations of various neonicotinoids in water are lower than
1/10 of the species LC50 (Beketov and Liess, 2008b), indicating
that these organisms respond to the adverse effects of these
neurotoxicants at sublethal levels, i.e., below 0.37, 0.46, and 27
µg/L of either thiacloprid, acetamiprid or imidacloprid for the
respective species above.

Finally, when mayfly nymphs (Baetis rhodani) andGammarus
fossarum are exposed together to sublethal levels of thiacloprid,
the amphipod increases its predation on the nymphs but
reduces its shredding of litter at concentrations as low as 0.5–1
µg/L (Englert et al., 2012). Imidacloprid also reduces the litter
decomposition carried out by stoneflies (Pteronarcys dorsata)
and crane flies (Tipula sp.) at concentrations below 12 µg/L
(Kreutzweiser et al., 2008b), probably due to a feeding inhibition
effect of this insecticide, which has also been observed with
other detritivores such as Gammarus pulex (Nyman et al., 2013)
and Eisenia fetida earthworms (Kreutzweiser et al., 2008a).
The implications of these impacts for the larger ecosystem are
discussed next.

IMPACTS ON THE ECOSYSTEM

The consequences of all the above for the larger ecosystem have
not been studied in detail yet. Difficulties in obtaining long-
term experimental data that relates the effects on individual
organisms to impacts on ecosystems prevent carrying out such

studies. However, it is clear that some predictions can be made
from the limited set of observations about the effects on aquatic
communities reported so far. At least two main areas of concern
can be identified: reduced capacity for decomposition of organic
debris by aquatic organisms and starvation of insectivores and
other vertebrate fauna that depend on invertebrates as a major or
only food source (Figure 7).

Reduced Decomposition Capacity
The recycling of organic matter that falls into water bodies is
an essential ecosystem function that not only provides food for
a wide range of aquatic and benthic organisms but also ensures
the water quality is adequate for all other organisms that use it,
including ourselves.

It is well established that mayfly (Ephemeroptera), caddisfly
(Trichoptera), and stonefly (Plecoptera) nymphs are the most
sensitive aquatic organisms to most pollutants, so they are
considered bioindicators of water quality (Morse et al., 1993;
von der Ohe et al., 2007). They are shredders of leaves and
other debris found at the bottom of creeks and streams that
run through forested and agricultural areas, although not the
only ones: larvae of crane flies (Tipulidae), black flies (Simulidae)
and other Diptera taxa perform the same function, together with
amphipods, ostracods and aquatic isopods. The fact that litter
decomposition by stoneflies, crane flies, mayflies and amphipods
is significantly reduced by concentrations of neonicotinoids
that are currently found in many aquatic environments is of
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FIGURE 6 | Relative abundance with respect to controls of aquatic invertebrates in imidacloprid-treated mesocosms. (A) Communities in rice paddies for

different initial concentrations of imidacloprid; dashed lines indicate average reductions. (B) Invertebrate taxa in rice paddies and streams; vertical dashed line indicates

the control. Data sources: rice paddies (Sánchez-Bayo and Goka, 2006a; Sánchez-Bayo et al., 2007; Hayasaka et al., 2012a,b); streams (Pestana et al., 2009).

concern (Kreutzweiser et al., 2007). Even if some individuals
may survive in depleted populations, they still will be unable to
carry out the decomposition function properly due to the feeding
inhibition caused by these neurotoxicants, which will render

those individuals unfit to do their job. Naturally, insufficient
feeding leads to reduced ability for reproduction (Böttger et al.,
2013), so the long term prospects are poor for the detritivore
populations affected.
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FIGURE 7 | Ecosystem impacts of water-borne neonicotinoid residues.

To many regulators of chemicals, whether mayflies or other
macroinvertebrates are depleted is not important, or at least
not as much as the increase in productivity that farmers may
obtain from using products like neonicotinoids, although the
latter benefits are questionable—see (Seagraves and Lundgren,
2012; Macfadyen et al., 2014). Just because macroinvertebrates
are not seen, since they are small and live at the bottom of ponds
and streams, this does not mean they can be dispensed with. As
Suter and Cormier have argued, these small creatures are present
in ecosystems for an important reason (Suter and Cormier, 2015).

Given that more than half of the waters are contaminated
(Figure 4) with neonicotinoid levels that impair this important
ecosystem function, higher organic and inorganic pollution can
be expected wherever these insecticides are present. Microbial
degradation of the debris may still occur, but it would be
slower and produce undesirable by-products such as methane
and sulfides (Sorrell and Boon, 1992; Kwok et al., 2005). The
combined impacts by neonicotinoids and other pollutants could
gradually poison the surface waters in many parts of the world.

Starvation of Insectivores and Invertebrate
Feeders
Indirect impacts are a common feature of many pesticides, one
that has no relation to the toxicity on the species ultimately
affected (Sánchez-Bayo, 2011). Thus, neonicotinoids do not cause

fishmortality directly, but because aquatic invertebrates are a rich
food source for many species of fish, depletion and disappearance
of this source in waters contaminated with neonicotinoids could
affect fish stocks in freshwater ecosystems. In the Netherlands,
where residues of imidacloprid in water are the highest in the
world (Table S1), correlations between such residues and the
decline of arthropod taxa such as Ephemeroptera, Odonata,
Diptera and some crustaceans have been found (van Dijk
et al., 2013). Although not all the declines can be blamed on
neonicotinoids, because other pesticide residues are also found
and can have similar impacts (Beketov et al., 2013; Vijver and van
den Brink, 2014), it would seem that neonicotinoids are clearly
involved.

As already mentioned, populations of aquatic species exposed
to neonicotinoids often do not recover. Indeed, the overall
abundance of macroinvertebrates in mesocosms treated with
imidacloprid or thiacloprid was lower than that in the controls
after a few months, while some species disappeared completely
(Sánchez-Bayo and Goka, 2006a; Beketov et al., 2008). This
suggests that recovery of the extinct populations in the following
year must require re-colonization from nearby areas. The
elimination of predatory species results in the increase of prey
species, with some of them, like mosquitoes (Figure 6B), being
a nuisance and a health hazard. In agricultural areas treated
extensively with seeds containing neonicotinoids the chances
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of re-colonization are less frequent for species that are not
very mobile. Aquatic insects and invertebrate species are being
removed from many land and water areas and heading toward
extinction. This dire prediction is not far from the reality in
some places. An entomological survey carried out in a region
of Germany comprising agricultural land and a nature reserve
reported a decline of 75% in flying insect abundance between
1989 and 2013 (Sorg et al., 2013). Many of these flying insects
have aquatic life cycles, and their disappearance is probably due
to their larvae not having survived in water. This astonishing
reduction in entomofauna parallels the decline of wild bee species
in North America and the British Isles (Fitzpatrick et al., 2007;
Cameron et al., 2011; Woodcock et al., 2016) and butterflies in
California and England (Gilburn et al., 2015; Forister et al., 2016)
in the same period. It must be remembered that neonicotinoids
were introduced in the early 1990s.

Riverine ecosystems are notorious for the rich biodiversity
they encompass (Sánchez-Bayo, 1991). Many of the vertebrates
living around rivers, lakes and ponds are insectivorous species
that depend almost exclusively on aquatic invertebrates as their
food source: frogs, newts, skinks and lizards, a large array of
birds including passerines and waders, bats and shrews. All
these animals, whether terrestrial or amphibian, draw their food
from flying insects, their aquatic larvae, crustaceans and worms
that live in the water environment. Consequently, the depletion
of this food source must necessarily affect them (Tennekes,
2010b). To date, the only study available that makes a connection
between bird declines and neonicotinoids in water was carried
out in the Netherlands (Hallmann et al., 2014). The authors
of that study collected information on 15 species of passerine
birds in that country over 20 years since 1993, and correlated
their abundance with residue concentrations of imidacloprid and
other pesticide residues in water during the same period. All
bird species studied were either insectivorous or fed insects and
larvae to their offspring during the breeding season. The only
pesticide that explained the declining trends of 14 bird species
was imidacloprid, whereas other factors that were taken into
consideration, such as urban or agricultural area, availability
of some cereal crops, fertilizer use and others, were discarded
by the statistical analysis. For the 6 species that showed a
significant decline with imidacloprid residues, the average bird
population decline was 3.5% per year in areas with residue
levels above 20 ng/L (ppt). These levels are below the HC5 for
imidacloprid (0.73µg/L, Figure 2) and well below the LC50s
of all aquatic insects tested. However, as demonstrated in the
microcosm and mesocosm studies, they are sufficient to cause
sublethal effects and delayed mortality, all of which can eliminate
entire populations of invertebrates, without recovery in many
cases.

Starvation by depletion of food sources due to pesticides was
demonstrated for gray partridges (Perdix perdix) in England
(Potts, 1986). Also, applications of fipronil insecticide for locust
control in Madagascar reduced the abundance of two species of
tenrec, a skink and iguanian lizards that depended on termites
as their main food source (Peveling et al., 2003). Evidence of

similar impacts by neonicotinoids on vertebrate taxa other than
birds does not exist because of difficulties in obtaining relevant
long-term experimental data. However, if terrestrial birds, lizards
and mammals can be taken as examples of what occurs in nature
when pesticides reduce the food source, it is reasonable to think
that other taxa that are experiencing worldwide declines, such as
frogs and bats can be affected by indirect neonicotinoid impacts
on the aquatic environment (Mason et al., 2013). Establishing
the link between food depletion and population declines in some
species is not difficult, but linking food depletion to individual
chemical causes is a more challenging task.

CONCLUSION

Negative impacts of neonicotinoids in aquatic environments are
a reality. Initial assessments that considered these insecticides
harmless to aquatic organisms may have led to a relaxation of
monitoring efforts, resulting in the worldwide contamination of
many aquatic ecosystems with neonicotinoids.

The decline of many populations of invertebrates, due mostly
to the widespread presence of waterborne residues and the
extreme chronic toxicity of neonicotinoids, is affecting the
structure and function of aquatic ecosystems. Consequently,
vertebrates that depend on insects and other aquatic invertebrates
as their sole or main food resource are being affected. Declines of
insectivore bird species are quite evident so far, but many other
terrestrial and amphibian species may be at risk.

Solutions must be found soon if we are to save the biodiversity
not only of aquatic ecosystems, but all other ecosystems linked
by the food web. Since the prophylactic use of seeds treated with
neonicotinoids is responsible for most of the soil and aquatic
contamination, while there is evidence of little productivity
gain, one obvious solution is to stop the marketing of seeds
coated with these insecticides (van der Sluijs et al., 2015)
and use alternative and carefully targeted methods for pest
control in agriculture (Douglas and Tooker, 2015; Furlan and
Kreutzweiser, 2015), such as integrated pest management (IPM).
At the same time, remediation systems based on photolytic
processes (Malato et al., 2001) and wetlands phyto-remediation
(Beketov and Liess, 2008c) should be implemented to reduce as
much as possible the current contamination by these and other
pollutants.
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