GET TO KNOW GMOS: SEED IMPROVEMENT How do we create new and improved varieties of plants? It starts with the seed. Plant breeders and scientists work together to create new varieties to address evolving challenges to farming and changing consumer preferences. Humans have been central in seed improvement for over 10,000 years, and in the last 100 years our understanding of genetics has accelerated and enabled new seed improvement techniques. Compared to earlier methods, breeders can now make improvements to seeds by moving more precisely one or a few genes into a seed. ## The chart below compares and contrasts modern methods of seed improvement, | SEED
IMPROVEMENT | SELECTIVE
BREEDING | INTERSPECIES
CROSSES | MUTAGENESIS | TRANSGENESIS
(GMOs) | |--|--|---|---|--| | TECHNIQUE | 10,000 years ago to today | fate 1900s to today | 1930s to today | 1990s to today | | What is it? | Combining traits from
similar and dissimilar
plants by crossing into
one genetic background
with improved traits | Breeding and tissue
culture techniques that
permit genetic exchange
between plants not
crossing naturally | Using chemicals or
radiation on seeds to
change DNA and
occasionally induce
a favorable trait | Adding a specific,
well-characterized gene to
a new seed to transfer a
specific trait | | Examples | 0 | | JA | 100 | | | Almost everything we eat | Pluots, tangelos, some apples, rice and wheat | Many plants and fruits
including pears, apples,
rice, yams, mint, some
bananas | Alfalfa, canola, com (field
and sweet), cotton, papaya,
soybeans, squash, sugar beet.
Apples and potatoes approve
and coming to market soon. | | improved by breeding? | YES | YES | YES | YES | | How many
genes are
affected? | 10,000 to
300,000+ | 10,000 to
300,000 | Random and
unknown, likely
thousands | 1 to 3 | | Do we know whi
genes in the see
are affected? | | NO | NO | YES | | Research and
development tin | 5 to 30
ne? years | 5 to 30
years | 5+
years | 5 to 10
years | | Tested by regula
agencies to ensu
safety for people
animals and the
environment? | ire | NO | NO | YES | | Can the seeds
be patented? | YES | YES | YES | YES | | Approved for
non-GMO and
organic farming | YES | YES | YES | NO | | Are people askir | ng NO | NO | NO | YES |