Effects of Forest Management on Salmonids in Headwater Streams of Western Oregon

Steve Cramer and Mark Teply

Questions we are Addressing

- How are stream temperatures and biotic productivity affected by contemporary timber harvesting in the riparian zone of headwater streams in the coastal region?
- How do fish respond to such changes?

The Present Issue

- ODF completed "RipStream" study during 2002-2008 that evaluated effects of current forest practices on water quality in 33 streams of coastal Oregon (18 on private forests).
- Increases of 1-2°C were found in 40% of stream reaches with riparian harvesting, but no effects in the other 60% of reaches with harvesting.
- Do the biological responses in these streams indicate a need to revise forest practices in small and medium class streams?

Pre & Post Harvest Stream Temperatures, RipStream Study (Groom et al. 2011)

SCIENCES ~ www.fishsciences.ne

Oregon Coastal Stream Temperatures Private Timberlands

FISH SCIENCES ~ www.fishsciences.net

Coastal Stream Temperature Regime RipStream site 5556

Riparian Buffers Can Limit the Effects on Streams

- Shading is the primary way to protect against stream heating
- Streams can cool as well as warm as they flow downstream

The Benefits of Increased Light

How has forest management changed solar radiation along coastal streams?

Study	Riparian Measure	Shade Loss	Shade Retention
Allen 2001	1994 Oregon Stream	Small streams – 13%	Small streams – 78%
	Protection Rules	Medium streams – 7%	Medium streams – 81%
Allen and Dent 2001	1994 Oregon Stream	Type F streams – 11%	Type F streams – 73%
	Protection Rules		
Janisch et al. 2012	50-ft Continuous Buffer	Type N streams – 8%	Type N streams – 86%
Schuett-Hames et	50-ft Continuous Buffer	Type N streams – 13%	Type N streams – 76%
al. 2012		Type in Streams – 15%	Type in Streams – 70%

- Several studies conducted along coastal streams in Oregon and Washington
- They evaluated shade response to each state's forest practices rules
- Magnitude of shade loss is about 10%; shade retention about 70 to 80%
- This is the same order of magnitude reported in the RipStream study

The Benefits of Increased Light

CRAMER FISH SCIENCES ~ WWW.FISHSCIENCES.NET From Hawkins et al. (1983)

Invertebrate Mainstem Responses: Adult Aquatic Emergence Increased

FISH SCIENCES ~ WWW.FISHSCIENCES.NET

The Benefits of Increased Light

• Derived from McIntire 1975 and Carlson et al. 1990

Effect of Temperature on Probability-of-Use by Salmonids

SCIENCES ~ www.fishsciences.ne

Stream Temperature Back in the Forest ~240 m Downstream

Limiting Factors for Fish Hinkle Creek

- Berger and Greswell (2009) "Seasonal abiotic conditions affected the adult cutthroat trout population in [Hinkle Creek] watersheds, and <u>low-discharge period</u>s (e.g., autumn) were annual survival bottlenecks."
- "maximum pool depth ... was the only habitat characteristic that was correlated with mean survival during the autumn period."
- Survival rates showed only a weak tendency to increase with higher temperatures

Cutthroat Trout Survival by Season in Hinkle Creek

From Berger and Greswell (2009)

Conclusions for Headwater Streams

- Current OARs have eliminated most shade loss and temperature gain in small and medium streams.
- Stream temperatures in logged headwater streams remain in the optimum range for salmonids.
- There is no temperature gain (on average) after the stream has flowed 150 -300 m into the forest.
- More light increases primary and secondary production.
- Fish response has consistently been that numbers and growth increase after forest harvesting.
- The key bottleneck to fish survival in headwater streams will typically be low flows in Autumn that expose fish to predation.

Stream Temperature vs Elevation

19 streams on private timberlands - Oregon coast

What were the downstream effects of RipStream on stream temperature?

Private Forests

- Downstream changes in MWAT were greater/less than in treatment reaches
- A variety of factors could account for these increases and decreases
- From pre-harvest data, we posit that the equilibrium temperature is increasing
- Thus, post-harvest data do not suggest a significant effect downstream

Riparian Shading and the Risk-Reward Balance

Full Canopy

- Low light and limited food resources
- Low feeding efficiency
- Cool temperatures
- Fish rely more on cover
- Supports slow growth and low density of fish
- Balance toward risk aversion

Reduced Canopy

- More light and increased food resources
- Higher feeding efficiency
- Increased temperature
- Fish rely less on cover
- Supports greater growth and density of fish
- Balance toward opportunity gain

Downstream Effects

- Numerous studies show that temperature increases can be ameliorated in shaded areas downstream.
- An example...Wilzbach et al (2005)...
 - Solar radiation increased 10-fold after removal of alders within 20 m of streams in a second growth forest
 - Temperature increased 1.5 °C across a 100 m logged reach, but dropped 0.5 °C in the next 300 m downstream, and 1 °C after 430 m

The Effects of Riparian Buffers – The RipStream Study

The Effects of Riparian Buffers – The RipStream Study

The Effect of Temperature on Growth of Salmon and Trout

